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a b s t r a c t

A novel high-performance eight-node quadrilateral mixed finite element is presented. Its formulation is
based on a Hu-Washizu type functional, suitable to the treatment of material nonlinearities. In order to
capture, even for coarse meshes, highly nonlinear spatial distribution of strain field, strain interpolation is
assumed to be discontinuous, piecewise-constant over suitable element subdomains. A robust element
state determination procedure is proposed to solve compatibility and constitutive equations at element
level. The mixed element stability is numerically assessed. Supported by the comparison with compatible
quadrilaterals, numerical simulations concerning elastoplastic and shape-memory alloy structures prove
accuracy and effectiveness of the proposed formulation.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Analysis of inelastic structures, as required for design and safety
assessment procedures in engineering problems, represents a cen-
tral task in computational mechanics. Thus, the arising challenge is
to conceive a high-performance finite element formulation that
combines accuracy (even for coarse meshes) together with robust-
ness and limited computational cost.

Unfortunately, the extension to materially non-linear context of
standard displacement-based (or compatible) formulations is
unable to meet those needs (for instance, see [1]). In fact, in such
a formulation, the displacement field is approximated by a polyno-
mial interpolation and the corresponding strain field is determined
by the compatibility condition in strong form, i.e. by differentia-
tion. Accordingly, computationally expensive fine meshes are
required for polynomial functions to capture the possibly highly
nonlinear strain spatial distribution, thus reducing the efficiency
of the approach. Those complications with compatible formula-
tions prompted the interest of researchers towards mixed finite
elements (for a detailed account on the topic, see [2]), originally
introduced to tackle problems characterized by some physical con-
straint, such as the incompressible or nearly incompressible behav-
ior of rubber-like media, or the shear constraint in plate problems
(e.g., see [3]). In particular, the main advantages of mixed formula-
tions are [4]: (i) relaxed continuity requirements, achieved by
approximating as primary unknowns not only the displacement,

but also the strain and/or stress fields, (ii) better stress solution,
computed without differentiation of displacement field, and (iii)
better displacement solution, also for coarse and irregular meshes.

The first mixed quadrilateral element for plane problems was
proposed by Pian and Sumihara [5] and consisted in a Hellinger-
Reissner (HR) formulation with bilinear interpolation of displace-
ment field and linear interpolation of stress field. To date, several
potential improvements have been sought for. Among those, the
introduction of corner rotational degrees of freedom (DOFs), ini-
tially explored by Allman [6], has been recognized as an attractive
strategy to pursue intermediate accuracy between linear and
quadratic elements with translations only, even though introduc-
ing zero-energy spurious modes. Notable HR formulations of
four-node quadrilaterals equipped with drilling rotations are the
elements HQ4-9b [7] and HS-A7 [4]. Both of them are characterized
by stress interpolations which satisfy internal equilibrium in
strong form, and consequently require the approximation of the
displacement field only over the element boundary. Remarkable
features are the adoption of Allman-type interpolation for side dis-
placement plus a stabilization of the arising zero-energy spurious
mode [7], and the derivation of self-equilibrated stress approxima-
tion resorting to the Airy’s function approach [4]. A not complete
list of other proposed four-node quadrilaterals with drilling rota-
tions comprises strain-enhanced formulations [8], applications of
Trefftz method [9,10] and strain-based models [11]. Alternatively
to the introduction of rotational DOFs, improved accuracy can be
achieved by using eight-node quadrilaterals, such as in the HR
formulations HBQ8 [12] and HSF-Q8-15b [13]. In particular, in
the latter the stress interpolation is self-equilibrated and the
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boundary displacement is approximated by the restriction of
isoparametric serendipity element shape functions. A formulation
which aims at combining the advantages of eight-node quadrilat-
erals with corner rotational DOFs is the element HQ8-13b, pre-
sented in [14]. Indeed, it can be regarded as a generalization of
element HQ4-9b, obtained by assigning a tangential DOF to the
mid-side nodes.

Beside the aforementioned mixed formulations, not specifically
pertaining to inelastic structures, attempts of designing high-
performance finite elements in elastoplasticity trace back to
Maier’s work [15,16] and his notion of constitutive law of the finite
element, resulting from the imposition of the constitutive equa-
tions in a discretized form at finite element level. Following such
approach, Comi and Perego [17] presented a Hu-Washizu (HW)
formulation of the elastoplatic boundary value problem, entailing
weak form expression of the constitutive equations. More recently,
Bilotta and coauthors [18–20] exploited a HR functional in which
the plastic multiplier is assumed as an independent variable (and
interpolated over the finite element mesh) to formulate
four-node quadrilateral elements. Therein, the imposition of the
constitutive law at finite element level amounts to solve a problem
analogous to the state update of an elastoplastic material, and is
consequently addressed by means of a return mapping procedure
by sequential quadratic programming (for an example of convex
programming in elastoplasticity, see [21]). A similar formulation,
although referred to an eight-node quadrilateral element, is also
adopted in [22], where the traditional von Mises yield surface is
piecewise linearized and the element constitutive equations are
recast in a linear programming problem.

In the present work, a new high-performance eight-node mem-
brane quadrilateral mixed element is proposed for the analysis of
inelastic structures. For the formulation to have a well-posed vari-
ational foundation, the material is supposed to be endowed with a
strictly convex stress potential, such as a Helmholtz free energy for
hyperelastic materials or a suitable incremental energy for gener-
alized standard materials with hardening behavior [23–26]. The
element derivation is based on a HW type functional, suitably
modified to exploit stress interpolation satisfying internal equilib-
rium in strong form. The boundary displacement is interpolated by
quadratic Lagrangian shape functions, that is, the restriction of
isoparametric serendipity element shape functions to the element
boundary [14]. The self-equilibrated stress interpolation is gener-
ated through the Airy’s function approach and consists in a
second-order complete basis, enriched by two cubic modes. There-
fore, the resulting element is isostatic, i.e. possesses the minimum
number of stress modes to suppress all deformational ones.

Distinctive feature of the present formulation is the strain inter-
polation, assumed to be discontinuous, piecewise-constant over
suitable element subdomains. This choice is the counterpart of
the discontinuous strain interpolation implicitly used in [27] and
actually recognized in [1] for beam elements. When considering
inelastic materials, internal variables (for instance, plastic strain
in an elastoplastic medium) are sampled at quadrature points,
and may exhibit highly nonlinear spatial distribution. The latter
is inherited by the strain field, since elastic strain usually exhibits
a more regular distribution, related to equilibrated stress distribu-
tion. Thus, for better reproducing the possibly highly nonlinear
spatial distribution of the strain field, it seems reasonable to
assume discontinuous, piecewise-constant interpolation for the
strain as well. On the other hand, the present strain interpolation
seems to be a generalization of the approach proposed for elasto-
plastic media in [18–20], allowing a unified treatment of inelastic
materials within the class of generalized standard ones.

The static condensation of strain and stress parameters at ele-
ment level is performed, which is legitimate because the relevant
interpolations are element supported. It requires to solve compat-

ibility and constitutive equations. However, due to nonsmooth
material nonlinearity, this goal is difficult to accomplish through
a direct application of Newton’s method, even if in conjunction
with line-search techniques. Here an efficient and robust iterative
procedure, similar to the ones discussed in [1,27–30], is proposed
to perform such element state determination. The basic idea of
the algorithm is to regard element equations as a function mapping
nodal forces onto nodal displacements, up to a rigid body motion.
Within this setting, the element state determination amounts to
the inversion of this map for the element nodal displacements at
the current structural iteration, and Newton’s method can be suc-
cessfully applied to this end. More specifically, given an estimation
of the nodal internal-force vector, corresponding stresses are
determined using equilibrium equations and then element subdo-
main constitutive relationships are solved for strains. In case the
latter are compatible with given nodal displacements, the proce-
dure ends, otherwise an updated estimate of nodal internal-force
vector is computed and the algorithm proceeds until convergence.
The crucial advantage of the proposed procedure is the possibility
to solve independently from each other as many material state
update problems as the number of element subdomains, thus
reducing the computational cost which stems from coupled non-
linear constitutive equations, and mitigating convergence difficul-
ties of Newton’s method.

The elementmixed formulation is concludedwith stability anal-
ysis, successfully addressed through the simple and reliable numer-
ical test proposed in [31]. Finally, numerical simulations are
reported for assessing accuracy, robustness and effectiveness of
the proposed quadrilateral, and comparing its performances with
compatible quadrilaterals. In particular, the capability of the present
formulation to unify the treatment of inelastic materials equipped
with a stress potential, is shown in the analyses of structures com-
posed of elastoplastic or shape-memory alloy (SMA) materials.

The paper is organized as follows. In Section 2 the variational
formulation and its mixed finite element approximation are dis-
cussed. The interpolation spaces for unknown variables are
selected in Section 3. In Section 4 the element state determination
procedure is described, whereas in Section 5 the numerical test
used to explore the element stability is presented. Numerical sim-
ulations are presented in Section 6, and conclusions are outlined in
Section 7. Some complementary results are reported in appen-
dices: a closed form expression for the proposed element compat-
ibility matrix is presented in Appendix A, filtering out rigid body
motions from element nodal DOFs is presented in Appendix B,
whereas details on the constitutive law inversion for elastoplastic
material with von Mises yield function or shape-memory alloy
material are given in Appendix C.

2. Variational formulation

2.1. Generalized standard materials

In the framework of small deformation theory, the constitutive
behavior of a generalized standard material [23] is described in
terms of a strictly convex Helmholtz free energy u, depending on
the strain e and on a generalized vector of internal variables I ,
and in terms of a dissipation potential D, which is supposed to
be a function of the flux of the internal variables _I . By standard
thermodynamic arguments, the constitutive equations for the
stress r and the generalized vector of internal forces F conjugated
to internal variables I turn out to be:

r e; Ið Þ ¼ @eu e; Ið Þ; F e; Ið Þ ¼ �@Iu e; Ið Þ; ð1Þ

where @ denotes the sub-differential operator of convex functions.
The evolution in time of the internal variables I is governed by
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