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a b s t r a c t

This paper proposes a partition of unity enrichment scheme for the solution of the electromagnetic wave
equation in the time domain. A discretization scheme in time is implemented to render implicit solutions
of systems of equations possible. The scheme allows for calculation of the field values at different time
steps in an iterative fashion. The spatial grid is partitioned into a finite number of elements with intrinsic
shape functions to form the bases of solution. Furthermore, each finite element degree of freedom is
expanded into a sum of a slowly varying term and a combination of highly oscillatory functions. The com-
bination consists of plane waves propagating in multiple directions, with a fixed frequency. This signif-
icantly reduces the number of degrees of freedom required to discretize the unknown field, without
compromising on the accuracy or allowed tolerance in the errors, as compared to that of other enriched
FEM approaches. Also, this considerably reduces the computational costs in terms of memory and pro-
cessing time. Parametric studies, presented herein, confirm the robustness and efficiency of the proposed
method and the advantages compared to another enrichment method.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

We live in an age in which we have harnessed electromagnetic
waves to engineer a wide variety of products and systems on
which modern societies have come to rely. Medical imaging
devices, mobile communications and electrical power generation
are just a few examples of technologies that are entirely reliant
on electromagnetic phenomena. While the underlying differential
equations that govern these phenomena were developed in the
19th century, their application to realistic engineering problems
requires numerical approximations, and engineers continue to
develop more advanced computational methodologies capable of
delivering these approximations with higher fidelity and with effi-
cient use of computational resources. In this paper we specifically
address short wave problems, which is of increasing importance
with the prospect of moving to millimetre wave technologies for
5G wireless systems.

We confine ourselves in this discussion to the deterministic
methods, i.e. those giving a unique solution given a well-posed
problem subject to prescribed boundary and initial conditions.
Common numerical methods include the Finite Difference Method

(FDM) [32,33,36] the Finite Element Method (FEM) [6,15,28] and
the Boundary Element Method [3–5]. Among these methods, the
FEM is well established for dealing with complicated geometries
or inhomogeneous media, and the other methods also offer certain
advantages, but they all remain constrained in term of the problem
size. This is mainly due to the fact that the computational domain
may be very large (electromagnetic waves often propagate in free
space), so that the size of the analysis domain and of scattering
objects can greatly exceed the wavelength, typically by multiple
orders of magnitude [8,35]. Since a certain number of degrees of
freedom are required to capture the solution over each wave-
length, such problems can result in a very large system of equa-
tions. This can render them completely intractable using
conventional FEM, FDM and BEM methodologies. Different authors
vary in their recommendations, but a typical rule of thumb sug-
gests the use of ten degrees of freedom in each wavelength for lin-
ear elements. To illustrate the problem, engineers may seek to
analyse the scattering of a radar wave by an aircraft. Even if the
analysis domain is confined to a 100 m cube surrounding the air-
craft, a finite element model would require at least 1012 degrees
of freedom to model the scattering of a radar wave of 100 mm
wavelength to engineering accuracy.

To overcome this limitation without compromising the accu-
racy, the Partition of Unity enrichment method was proposed in
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[21] for harmonic wave problems governed by the Helmholtz
equation. The method consists of enriching the approximation
space with oscillatory functions that have better approximation
properties compared to the standard low order polynomials usu-
ally used in the FEM. The enrichment idea spawned a large body
of literature including the work on the Partition of Unity Finite Ele-
ment Method (PUFEM) [7,18,19,22] and also similar enrichment
techniques such as the Generalised Finite Element Method
[30,31] the Ultra-Weak Variational Formulation [14,20] and the
Discontinuous Enrichment Method [9,16,34]. The enrichment
approach is also used in other methods such as the Boundary Ele-
ment Method [25–27]. A recent survey on various enrichment
approaches could be found in [12].

The enrichment functions used in the case of harmonic wave
problems, as presented above, are in the form of plane waves or
radial waves and are solutions of the partial differential equations
(PDEs) governing the problems. This latter aspect, while useful, is
not necessary for incorporating a� priori knowledge of the solu-
tion behaviour in the approximating field. This inspired the use
of intuitive field enrichment functions capable of capturing the
solution behaviour while not necessarily being solutions of the
problem PDE. Such enrichment was proposed for solving heat
transfer problems in the time domain [23,24,29]. The temperature
field was enriched with Gaussian functions capable of modelling
the high temperature gradients and led to the use of coarse mesh
grids, instead of the very fine meshes employed in standard FEM,
and hence to considerable savings in the computational effort. In
spite of the problem being time dependent, the enrichment func-
tions are independent of time, which permits the re-use of a single
system matrix for all time steps, resulting in even further compu-
tational saving. The success of this approach has motivated the
current work in developing the field-enrichment technique to
solve time-dependent wave problems. It is worth noting that an
enriched model for wave propagation in one dimensional problems
was presented in [17]. Recently this was extended into two-
dimensional transient wave problems [10] where the solution field
within each finite element is discretized with the usual Lagrangian
functions and enriched with harmonic functions, each with a pre-
scribed frequency. In the current work, the PUFEM is used for the
first time to solve the wave equation in the time domain. In previ-
ous work on the PUFEM only time harmonic problems were con-
sidered when solving the equation in the frequency domain.
Instead here we show that the method could also be used for solv-
ing non-time-harmonic problems in the time domain. The wave
field solution is presented as a sum of a slowly varying term and
a highly oscillatory part, which is expanded into a sum of plane
waves propagating in multiple directions. However, unlike the
other enrichment technique [10] here the plane waves have a fixed
frequency. The performance of this approach is assessed for differ-
ent test wave models where exact solutions are available. The
results are compared to those obtained by a polynomial based
FEM and also to another enrichment approach where the proposed
scheme provides better accuracy at a reduced computational cost.

The paper is organised as follows. In Section 2 we introduce the
considered problem. Then in Section 3 we present the proposed
PUFEM model, while in Section 4 the model is validated on two
numerical test cases with analytical solutions. We finish with some
concluding remarks and recommendations for future work in
Section 5.

2. Transverse electric mode of propagation

To describe the techniques used for enriched finite elements we
consider a linear wave equation in two-dimensional domains.
Hence, let X � R2 be an open bounded domain with Lipschitz

continuous boundary C and let ½0; T� be the time interval for the
wave propagation. The boundary-value problem considered in
the current study is defined as

@2E
@t2

� c2r2E ¼ f ðt; xÞ; ðt;xÞ 2 ½0; T½�X; ð1aÞ

@E
@v̂

þ hE ¼ gðt; xÞ; ðt;xÞ 2 ½0; T½�C; ð1bÞ

Eð0;xÞ ¼ E0ðxÞ; x 2 X; ð1cÞ
@E
@t

ð0; xÞ ¼ V0ðxÞ; x 2 X; ð1dÞ

where x ¼ ðx; yÞ> are the Cartesian coordinates, t is the time vari-
able, v̂ the outward unit normal on C; c and h are constants, and E
the magnitude of the transverse electric field in the direction per-
pendicular to the domain plane. In (1), f ðt;xÞ and gðt;xÞ are respec-
tively, prescribed source and boundary functions, E0ðxÞ and V0ðxÞ
are given initial conditions. Note that the model (1) represents
the basis of many linear electromagnetic and acoustic propagation
problems. For instance, applied to separate components of the lin-
ear electromagnetic field, it can represent an accurate and efficient
solution for a short pulse propagating over long distances.

The time integration of the system (1) can be carried out using
any implicit scheme including Newmark methods to avoid the very
small time steps that may be required in simulations for explicit
time integration schemes. However, the proposed spatial enrich-
ment is time independent and hence independent of the choice of
the integration scheme. The spatial discretization is introduced after
the temporal one to enable changing the temporal discretization
independently on the enrichment approach presented here.
Alternative integration schemes can also be found in [2,11]. For
simplicity in the presentation we consider the second-order central
difference method. The latter is well known and details could be
found in standard text books [1]. Thus, to integrate the Eqs. (1) in
time we divide the time interval into N subintervals ½tn; tnþ1� with
length Dt ¼ tnþ1 � tn for n ¼ 0;1; . . .. We use the notation Wn to
denote the value of a generic function W at time tn. Thus, given the
solutions En�1 and En at times tn�1 and tn the solution at the next time
step tnþ1 is updated according to the semi-discrete equation

Enþ1 � 2En þ En�1

Dt2
� c2r2Enþ1 ¼ f ðtnþ1;xÞ; n ¼ 0;1;2; . . . ;

E0ðxÞ ¼ E0ðxÞ;
E�1ðxÞ ¼ E0ðxÞ � DtV0ðxÞ:

ð2Þ

Note that to update the solution Enþ1 in the semi-discrete formula-
tion (2) one has to solve a linear system at each time step. The struc-
ture of this linear system is mainly dependent on the mesh used in
the spatial discretization and the time step used in the time integra-
tion. For the spatial discretization, we multiply the equation in (2)
by a weighting function /ðxÞ, and then integrate over X. Using the
divergence theorem and using the boundary condition (1b) one
obtains the following weak formulation of the problem (1)Z
X
Enþ1/dXþðc2Dt2Þ

Z
X
rEnþ1 �r/dXþðc2Dt2Þ

I
C
ðhEnþ1Þ/dC

¼
Z
X

2En�En�1þðDt2Þf ðtnþ1;xÞ
� �

/dXþðc2Dt2Þ
I
C
gðtnþ1;xÞ/dC:

ð3Þ

To solve the weak formulation (3) with the finite element method
we discretize the spatial domain X into a set of finite elements T i

with the index i referring to the i-th element. The combination of
all these elements forms our computational domain Xh ¼ [iT i, with
Xh #X: If T i and T j are two different elements of Xh, then T i \ T j is
either a mesh point, or a common side, or the empty set. The
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