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a b s t r a c t

Response sensitivity analysis is of significant value to solve various inverse problems in engineering prac-
tice using gradient-based optimization algorithms. In the context of finite element (FE) method, an effi-
cient, accurate and general sensitivity analysis approach, namely the direct differentiation method
(DDM), has been developed and extended to various element and material models. However, the DDM
has not been addressed for the response sensitivity of plastic plane problems (i.e., plane stress and plane
strain problems), in spite of their wide applications in practice. This paper bridges this gap by extending
the DDM based response sensitivity algorithm to general plastic plane problems, which is solved by tak-
ing advantage of general three dimensional (3D) constitutive models. The newly developed DDM-based
sensitivity analysis algorithm is implemented in the open source finite element framework (OpenSees)
and verified using two realistic application examples of plane problems, i.e., a concrete dam and a steel
shear wall. The efficiency and accuracy of the DDM are verified by using the forward finite difference
method.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Parallel with the development and applications of finite ele-
ment (FE) response analysis of structural and/or geotechnical sys-
tems, the FE response sensitivity analysis (RSA) has been
developed for its significant value in solving various optimization
problems in engineering practice using gradient-based optimiza-
tion algorithms. The FE RSA has been widely used in hotspot
research areas to tackle advanced engineering problems. These
areas include the simplified probabilistic response analysis for per-
formance assessment [1–3], finite element model updating [4,5],
system identification [6,7], health monitoring [8], structural relia-
bility [9], structural control, and structural optimization [10]. Rec-
ognizing the practical value of RSA for these complicated
engineering problems, several methods have been developed for
RSA, e.g., the finite difference method (FDM), the perturbation
method (PM), the adjoint method (AM), and the direct differentia-
tion method (DDM). DDM, compared to other existing methods
with different limitations, is efficient (i.e., computationally less
expensive), accurate (i.e., non-sensitive to numerical noise) and

general for various nonlinear problems (i.e., not limited to linear
problems) [11–15]. In each time or load step, the DDM differenti-
ating analytically the time- and space-discretized equations of
motion with respect to the sensitivity parameters, and obtaining
‘exact’ first derivatives of the responses of the discretized system.
Therefore the DDM exhibits great efficiency and accuracy and
can be extended to general nonlinear analysis by using finite ele-
ment method. The authors and other researchers [11,16] have sig-
nificantly contributed to the development of DDM by extending
the current FE-based response analysis framework to RSA of a wide
range of problems. The DDM has been extended to nonlinear struc-
tural models with multi-point constraints [12], and to various ele-
ment, section and nonlinear material models [17]. Furthermore,
the DDM has been extended to RSA of geotechnical systems
[15,18], soil-structure interaction problems [19] and dam-
reservoir-foundation systems [20]. The RSA framework has been
enhanced by developing the DDM-based sensitivity analysis for
various materials models (e.g., uniaxial material for concrete or
steel fibers, three-dimensional (3D) constitutive models for con-
crete or soils), elements (e.g., displacement-based and force-
based beam-column elements, quad elements, etc.), and analysis
algorithms (e.g., multiple constraint handlers) in a general open
source FE analysis framework, OpenSees [12,21–23]. To the end,
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DDM has been extended to a wide range of elements and materials
for frame-type models and 3D continuum-based models (e.g., 3D
building/bridge structural foundation systems) [20,24–25]. How-
ever, the FE RSA of plane problems (i.e., plane stress and plane
strain problems) using DDM has not been addressed, in spite of
their wide applications in engineering practice.

The 3D FE analyses are commonly used for response prediction
and performance assessment to tackle real engineering problems
of practical interest. However, 3D FE modeling is not necessary
for the problems that can be simplified into two dimensional
(2D) plane problems due to the inherent mechanical behavior.
These 2D problems can be satisfactorily solved using plane analysis
in an efficient way, thus significantly reducing the computational
effort [26]. In practice, there are two types of fundamental plane
problems (i.e., plane stress and plane strain problems) that can
be formulated, assuming that certain conditions on the stress
and displacement fields are satisfied, respectively [27]. For exam-
ple, a plane stress problem can be defined, when the geometry of
the body is such that one dimension (i.e., thickness) is usually
much smaller than the other two dimensions and the external
loads are uniformly applied over the thickness (e.g., thin plates,
membranes, composite laminates) [28]. The stresses associated
with the thickness direction are ignored in plane stress problems.
On the other hand, a plane strain problem can be defined, when
the geometry of the body is such that one dimension (i.e., length)
is much larger than the other two dimensions (e.g., dams and tun-
nels) and the external loads are uniformly distributed and perpen-
dicular to this dimension. The strains associated with the length
direction are ignored in plane stress problems. The plane stress
and plane strain problems are two types of fundamental mechan-
ical problems in the structural response analysis based on contin-
uum mechanics and are frequently encountered in engineering
practice (e.g., foundations, dams, plates, composites, etc.).

In the past few years, several existing plane analysis methods
have been well documented in the literature [29–31]. It is rela-
tively straightforward to solve plane problems with homogeneous
and linear elastic isotropic materials by deducing the constitutive
relation between the 2D strain and 2D stress components based
on the Hooke’s law [32]. However, in real engineering problems,
the materials are far more complicated than linear elastic isotropic
and the complexity of plane problems is increased significantly
when using advanced plasticity-based constitutive models. There
are mainly two classes of constitutive models for the 2D plane
problems, namely the direct approaches and the indirect
approaches. In the direct approach, 2D constitutive models relating
the stress and strain states are developed directly to simulate the
responses of plane problems [33]. This approach is straightforward
but usually requires extra efforts on developing new 2D constitu-
tive models for plane problems. Contrast to the direct approach,
the indirect approach takes advantage of the existing general 3D
constitutive models and tailors them to 2D plane problems by pro-
viding 2D material wrappers. The 2D material wrapper allows the
computation of 2D material responses from any 3D material con-
stitutive models [32]. The indirect approach has been attractive
to engineers and widely used in addressing plane problems when
the 3D constitutive models are available.

This paper aims at enhancing the RSA capabilities of FE models
for plane problems. Inspired by the indirect approach to address
plane problems in response analysis, this paper presents a novel
RSA method for plane problems by extending the DDM framework
to the indirect approach, taking advantaging of the existing DDM
algorithm for the 3D material models. The newly proposed algo-
rithms are implemented in OpenSees. For verification purposes,
two realistic application examples of plane problems, including a
plane stress problem (i.e., a steel shear wall simulated using sim-
plified J2 elastoplastic model) and a plane stress/strain problem

(i.e., a concrete gravity dam simulated using truncated Drucker-
Prager model), are presented in this paper. The nonlinear responses
and response sensitivities are computed using the newly devel-
oped algorithms. The forward finite difference (FFD) method is
used to validate the DDM formulation and to explore the benefits
of DDM. The methods presented in this paper bridges an important
gap between FE response-only analysis and DDM-based FE RSA for
plane problems, with a wide range of engineering applications. The
DDM-based RSA for plane stress and plane strain problems will
contribute to the further success of other advanced problems men-
tioned earlier in engineering and research communities by the
enhanced capability of gradient computation.

2. Response sensitivity analysis (RSA)

The responses of structural and/or geotechnical systems can be
deemed as implicit mathematical nonlinear functions of the mod-
eling parameters (e.g., material, geometric, loading, boundary
parameters), which can be computed by the FE response analysis
(RA). In contrast, RSA computes the first-order partial derivative
of the structural responses with respect to various modeling
parameters defining a structure and its loading environment.
Undoubtedly, RSA requires more computational effort, but equally
important, if not more than RA. RSA is applicable for various sub-
fields of structural and geotechnical engineering using gradient-
based optimization methods, such as FE model updating, system
identification, health monitoring, reliability analysis, structural
control, and structural optimization. Therefore, DDM has increas-
ingly attracted more research interest due to its advantages in
computing response sensitivity and the wide applications of
response sensitivities to solve complicated engineering problems.

3. Direct differentiation method (DDM)

The DDM calculates the first-order derivative of the responses
by differentiating analytically the governing response equations
of motion after FE discretization, which involves computing the
derivatives at different levels (i.e., structure, element, section,
and material levels) of FE response quantities. Without loss of gen-
erality, the formulation of DDM for dynamic loading problems is
presented herein briefly. In the context of FE response analysis,
after spatial discretization, the partial differential equation govern-
ing the motion of the structural system takes the form,

MðhÞ€uðt; hÞ þ CðhÞ _uðt; hÞ þ Rðuðt; hÞ; hÞ ¼ Fðt; hÞ ð1Þ
where M is the mass matrix, C is the damping matrix, Rðuðt; hÞ; hÞ is
the inelastic restoring force, Fðt; hÞ is the dynamic load applied,
uðt; hÞ is the nodal displacement vector, t is time and the superposed
dot operator represents the differentiation with respect to time, and
h is the vector of model parameters for sensitivity analysis. The
dynamic equation can be further discretized along time space using
numerical integration method, e.g., Newmark – b method [34], i.e.,
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Note that the dependence on parameter is omitted for simplic-
ity in notation. Substituting Eqs. (2) and (3) into Eq. (1) yields the
nonlinear equation of motion with the unknowns unþ1 ¼ uðtnþ1Þ;

wðunþ1Þ ¼ ~Fnþ1 � 1

bðDtÞ2
Munþ1 þ a

bðDtÞCunþ1 þ Rðunþ1Þ
" #

¼ 0

ð4Þ

Y. Li et al. / Computers and Structures 182 (2017) 392–403 393



Download English Version:

https://daneshyari.com/en/article/4965763

Download Persian Version:

https://daneshyari.com/article/4965763

Daneshyari.com

https://daneshyari.com/en/article/4965763
https://daneshyari.com/article/4965763
https://daneshyari.com

