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a b s t r a c t

A novel iterative reduced-order modeling method is proposed, which is based on the recently developed
algebraic dynamic condensation method. The algebraic substructuring technique is employed to improve
the reduction efficiency, and the initial reduced model is calculated using the substructural stiffness con-
densation and the interface boundary reduction procedures. Then, the initial reduced model is iteratively
updated using the iterative substructural inertial effect condensation procedure until the solutions con-
verge. The iterative formulation of the reduced model is represented simply with small submatrix oper-
ations to avoid huge computational cost induced by the iterative procedure resulting from the very large
global transformation matrix. To verify the performance of the proposed method, we consider several
large structural problems, and compare the numerical results to those of the iterated improved reduced
system (IIRS) method, a widely used reduced-order modeling method.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

While computational resources have been greatly improved, the
demand for dynamic analysis of large and complex structural sys-
tems, which are modeled using the finite element (FE) method, has
increased even more rapidly. Because dynamic analysis using glo-
bal size matrices can be very time-consuming work, dynamic con-
densation methods [1–11] have been widely used for several
decades. The reduced-order models obtained via dynamic conden-
sation methods are very important in a number of research fields,
including structural health monitoring, structural design optimiza-
tion, multi-body dynamics, FE model updating, and experimental-
FE model correlation [12–22].

The pioneering work for dynamic condensation methods is the
static condensation method proposed by Guyan [2] and Irons [3] in
the 1960 s. In 1989, O’Callahan [5] developed the improved
reduced system (IRS) method employing the newly derived trans-
formation matrix. This is calculated by adding the extra term con-
taining inertial effect to Guyan’s transformation matrix [2]. Since
then, there have been considerable efforts to improve the solution
accuracy of the IRS method. Friswell [7] developed the iterative IRS
transformation matrix, and proposed the iterated IRS (IIRS)
method. After that, Xia and Lin [8] proposed the modified IIRS
transformation matrix, and improved the convergence speed of
the IIRS method. To improve the computational efficiency of the

Guyan, IRS, and IIRS methods, there have been several studies
[23–28] employing physical domain based substructuring, which
is a key concept of the component mode synthesis (CMS) methods
[29–37].

Because the formulations of the IRS and IIRS methods are sim-
ple and produce accurate reduced models, those methods have
been widely used. However, the IRS and IIRS methods have a crit-
ical limitation to handle very large FE models with hundreds of
thousands of degrees of freedom (DOFs). This is because the part
of the transformation matrix corresponding to the truncated DOFs
is highly populated, which induces huge computational cost. Con-
sidering the recent trend of increase in the size of FE models, it is
very important to overcome this limitation of the IRS and IIRS
methods.

Recently, to resolve the limitation of the IRS method, we devel-
oped a very efficient and accurate method, which is named ‘‘alge-
braic dynamic condensation method” [1], exploiting the algebraic
substructuring technique [38–43]. It was reported that the alge-
braic dynamic condensation method could handle a very large FE
model with hundreds of thousands of DOFs, which could not be
solved using the IRS method, and that the performance of this
method was much superior to the IRS method in terms of both
the solution accuracy and computational efficiency.

In this study, as an extension of the algebraic dynamic conden-
sation method [1], a new iterative reduced-order modeling method
is proposed. Using the algebraic substructuring technique [38], the
global mass and stiffness matrices are automatically partitioned
into small submatrices. To construct an initial reduced model,
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the substructural stiffness is condensed into the interface bound-
ary, and the interface boundary is reduced using the dominant
interface normal modes. Then, the initial reduced model is itera-
tively updated until satisfying the designated error tolerance
through the iterative substructural inertial effect condensation
procedure. To reduce computational cost, the formulation of the
iterative reduced model is expressed by simple multiplications
and summations of small submatrices. The performance of the pro-
posed method is verified considering several large structural FE
models. It is observed that the computational efficiency of the pro-
posed method is much superior to that of the IIRS method, with
more accurate solutions. Furthermore, the proposed method can
handle large FE models that the IIRS method cannot handle.

In the following sections, the formulation of the IIRS method is
reviewed briefly, and the proposed method is derived. We then
evaluate the performance of the proposed method compared to
that of the IIRS method using several structural problems. Finally,
conclusions are drawn.

2. Iterated IRS (IIRS) method

In structural dynamics, the equations of motion for un-damped
free vibration without damping are given by

Mg €ug þ Kgug ¼ 0; ð1Þ
where Mg and Kg are the global mass and stiffness matrices, respec-
tively, and ug is the global displacement vector. In the IIRS method,
before reducing the global system, the global matrices and vector
are separated as

Mg ¼
Mt Mtr

MT
tr Mr

� �
; Kg ¼

Kt Ktr

KT
tr Kr

� �
; ug ¼

ut

ur

� �
; ð2Þ

in which the subscripts t and r denote the truncated and retained
DOFs, respectively, and the subscript tr denotes the coupled DOFs
between t and r.

The global eigenvalue problem is defined by

Kgug ¼ kMgug ; ð3Þ
and its partitioned form is expressed as

Kt Ktr

KT
tr Kr

� �
ut

ur

� �
¼ k

Mt Mtr

MT
tr Mr

� �
ut

ur

� �
; ð4Þ

in which k denotes the eigenvalue of the global system.
Expanding the first row in Eq. (4), the truncated DOFs vector ut

is written as

ut ¼ �K�1
t Ktrur þ kK�1

t ðMtrur þMtutÞ: ð5Þ
Assuming a transformation matrix T between ut and ur; the trun-
cated DOFs vector ut is rewritten as
ut ¼ Tur: ð6Þ
Substituting Eq. (6) into ut in the right-hand side of the Eq. (5), the
following equation is obtained

ut ¼ ½�K�1
t Ktr þ kK�1

t ðMtr þMtTÞ�ur ; ð7Þ
and from the relation ut ¼ Tur in Eq. (6), the transformation matrix
T can be defined as

T ¼ Ts þ kK�1
t ðMtr þMtTÞ with Ts ¼ �K�1

t Ktr: ð8Þ
Using the transformation matrix T in Eq. (8), the global displace-
ment vector ug is represented by

ug ¼
ut

ur

� �
¼ T

Ir

� �
ur ¼ ðTG þ kTaÞur with TG ¼ Ts

Ir

� �
;

Ta ¼ K�1
t ðMtr þMtTÞ

0

" #
;

ð9Þ

where TG is the Guyan transformation matrix [2], which is some-
times called the ‘‘static condensation matrix”, kTa is an additional
transformation matrix containing the inertial effects of the trun-
cated DOFs, and Ir is the identity matrix for the retained DOFs.

Considering only TG in Eq. (9), the global displacement vector ug

is approximated as

ug � �ug ¼ TGur ; ð10Þ
and applying Eq. (10) into Eq. (3), the following reduced eigenvalue
problem is obtained

�KGur ¼ �k �MGur with �MG ¼ TT
GMgTG; �KG ¼ TT

GKgTG; ð11Þ
in which �MG and �KG are the reduced mass and stiffness matrices in
the Guyan reduction, and �k is the approximated eigenvalue.

Pre-multiplying �M�1
G to Eq. (11), we can obtain the following

equation

�kur ¼ HGur with HG ¼ �M�1
G

�KG: ð12Þ
In Eq. (9), using �k instead of k; and considering the relation
�kur ¼ HGur in Eq. (12), the approximated global displacement vec-
tor �ug is redefined as

�ug ¼ T1ur with T1 ¼ T
Ir

� �
; T ¼ Ts þ K�1

t ðMtr þMtTÞHG: ð13Þ

Note that it is not possible to directly calculate the transformation
matrix T1; because the matrix T is implicit in the formulation.
Therefore, an iterative scheme needs to be employed to calculate
the transformation matrix T1.

Employing an iterative scheme, we can define an iterative

transformation matrix TðkÞ
1 as

TðkÞ
1 ¼ TðkÞ

Ir

" #
with TðkÞ ¼TsþK�1

t ðMtr þMtT
ðk�1ÞÞHðk�1Þ for kP2;

ð14Þ
in which

Hðk�1Þ ¼ð �Mðk�1ÞÞ�1 �Kðk�1Þ; �Mðk�1Þ ¼ðTðk�1Þ
1 ÞTMgT

ðk�1Þ
1 ; �Kðk�1Þ ¼ðTðk�1Þ

1 ÞTKgT
ðk�1Þ
1 ;

ð15aÞ

Tð1Þ ¼ Ts;H
ð1Þ ¼ HG;T

ðkÞ
1 ¼ TG; �Mð1Þ ¼ �MG; �Kð1Þ ¼ �KG; ð15bÞ

where the superscript k denotes the k th iteration, and when k ¼ 2;

TðkÞ
1 is equivalent to the transformation matrix of the improved

reduce system (IRS) method [5].

Thus, using the transformation matrix TðkÞ
1 in Eq. (14), the

reduced mass and stiffness matrices in the IIRS method are
obtained by

�Mg ¼ ðTðkÞ
1 ÞTMgðTðkÞ

1 Þ; �Kg ¼ ðTðkÞ
1 ÞTKgðTðkÞ

1 Þ; ð16Þ
and the reduced eigenvalue problem is given by

�Kgð �uÞi ¼ �ki �Mgð �uÞi for i ¼ 1;2; � � � ;Nr; ð17Þ
where �ki and ð�uÞi are the approximated eigenvalues and eigenvec-
tors in the IIRS method, respectively, and Nr is the number of the
retained DOFs. Herein, the ith approximated global eigenvector

ð�ugÞi can be calculated by ð�ugÞi ¼ TðkÞ
1

�ui.
It is important to note that, when a large size FE model (over

105 DOFs) is considered, the IIRS method could induce a huge
computational cost due to a highly populated matrix T in
Eq. (13) requiring large computer memory, which is updated
through the iterative procedure to construct the iterative
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