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a b s t r a c t

This contribution addresses the modeling and the stochastic analysis of transient thermal processes by
means of the finite element method. It focuses on the theoretical presentation as well as the application
of an efficient reduced basis strategy that advantageously lowers the dimension of the investigated sys-
tem. The modal content of the reduced basis is driven by the goal oriented error assessment of a user-
defined quantity of interest. The first section of the article presents the stochastic system of interest:
key aspects of a stochastic analysis are recalled along with the employed spatial discretization. The newly
developed adaptive reduced basis strategy is then detailed in the second section before extensive numer-
ical investigations are carried out in order to validate it in the last section of the article. A numerical
benchmark allowing for the confrontation of the proposed strategy with usual Monte-Carlo simulations
highlights the benefits of the method that allows for a precise control of the maximum admissible error
on the quantity of interest.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Ever-growing computational power allows to simulate physical
phenomena of increasing complexity. In particular, the use of fine
spatial discretization for sophisticated multiphysics numerical
simulations is now conceivable for deterministic systems. For
stochastic systems however, obtaining relevant results from
numerical simulations is still a challenge since a very large number
of simulations must be carried out. The stochastic nature of a sys-
tem may be related to uncertainties inherent to its manufacturing
[1,2] or to the fact that its solicitations—such as potential thermal
gradients or pressure loads—are unknown.

There are two ways to model a stochastic problem: (1) one may
consider a nonparametric probabilistic approach where the link
between the values of the parameters and the mechanical model
is not explicit as the one presented in [3] or (2) a parametric
approach where the variability of design parameters is
accounted for by means of parametric uncertainties may be
employed. The method presented in this paper belongs to the
second category.

In any case, a stochastic system features a randomness that can
only be accounted for with a statistically relevant sample thus

implying a very significant increase in terms of computational
costs. A state of the art of stochastic numerical methods can be
found in [4–6] and references therein. These methods, most of
which rely on the well-known finite element method (FEM), may
be split in three categories:

intrusive stochastic techniques are a generalization of the FEM
accounting for uncertainties associated with the parameters of the
problem. Both the variation of usual deterministic variables—space
and time coordinates—and the random stochastic variables are dis-
cretized using the standard approach in the FEM: the Galerkin for-
mulation [7–10]. The cornerstone of these methods lies in a proper
definition of the approximation space of the stochastic variables.
As a downside, these methods are computationally expensive
and their implementation may be arduous. In order to overcome
the high computational cost of these techniques, specific develop-
ments are available in the literature such as (1) iterative methods
well-matched to the structure of resulting matrices [11–13] and
(2) the use of reduced bases in order to represent the random space
[9,14,15];

non-intrusive stochastic techniques are widely used as they
rely on typical deterministic computations. Indeed, the random-
ness of the system is accounted for by means of Monte Carlo sim-
ulations. A large number of deterministic problems are solved
through out the random space [16]. Such an approach is conceptu-
ally simple, robust and easy to implement but requires solving a
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large number of finite element problems in order to generate an
output sample that is statistically relevant. The increased compu-
tation time inherent to such methods may be mitigated by the
use of a reduced basis. In [17–19], the authors introduced a
reduced basis methodology to reduce the cost of Monte Carlo sim-
ulations, offering an attractive framework for solving stochastic
problems with a large number of parameters. The idea is simple
and effective because the different Monte Carlo shots lead to sim-
ilar FE problems and therefore the reduced basis approach is highly
performant.

Uncertainty quantification techniques may introduce
further an estimation of the analysis. Different methods have
been proposed to control the approximations, see for example
[20–23].

The method presented in this article can be classified as a
non-intrusive technique. Indeed, it does not require any
modification of the finite element formulation. However, and
contrary to a classical Monte-Carlo approach, it does impose a
very specific solution algorithm. It builds up on the idea of
using a reduced basis combined with a goal oriented error
assessment criterion which controls the content of the reduced
basis in order to maximize its numerical efficacy. The present
investigation is an extension of the work initiated in [24,25]
to transient thermal processes [26,27]. As a matter of fact, the
time dependence of the investigated problem makes it more
arduous to solve. Indeed, the methodology introduced in [24]
is specific to stationnary problems: assessing its applicability
and relevance in the case of nonstationnary problems is the
focus of this article.

In the first section of this article, the investigated thermal
problem is presented in details: transient thermal equations
are given before a brief description on how to tackle a stochastic
problem with the usual Monte-Carlo strategy. In the second
section, the proposed numerical strategy based on adaptive
reduced basis is exposed. Theoretical details are given with
respect to the problem formulation, the general algorithm and
the error assessment procedure. In the last section of the article,
numerical results are presented for a benchmark test: both the
accuracy and the efficacy of the proposed numerical strategy
are thoroughly analyzed.

2. Stochastic problem

2.1. Governing equations

We consider a bounded domain X, representing a 2D structure.
The boundary @X of X, is divided in two parts @DX and @NX such
that @DX [ @NX ¼ @Xand @DX \ @NX ¼ £.

The employed material model is assumed to be isotropic with
no temperature dependence. Relevant material parameters men-
tioned in the following include: the density q, the specific heat c
and the thermal conductivity k. The stochastic behavior of the
model is introduced assuming that kðx; hÞ is a random field, where
x 2 X stands for the position vector, and h 2 H characterizes the
randomness. The sample space H is the set of possible outcomes
of h. As a random field, kðx; hÞ is a function mapping each point vec-
tor x to a random variable, typically with all the same Probability
Density Function (PDF) and with cross-correlation depending on
the distance between the locations. Assuming that the spatial cor-
relation is regular enough, the Karhunen-Loève decomposition
[28,29] allows for a representation of a random field by a sum of
independent scalar random variables multiplied by deterministic
functions of x.

A prescribed flux field fd is applied on @NX, a prescribed
temperature field Td is imposed on @DX and a prescribed source

field rd is applied on X. In a general context, the material properties
characterized by q; c and k as well as the loadings fd; Td and rd may
be random fields. Without loss of generality, it is assumed in the
following that the randomness is restricted to the material
parameters introduced in the thermal conductivity k. Thus, the
problem reads: find the unknown temperature field Tðx; t; hÞ such
that

div kðx;hÞgrad Tðx; t;hÞð Þ½ � þ rdðx;hÞ ¼ qðx;hÞcðx;hÞ @T
@t ðx; t;hÞ in X ðaÞ

grad Tðx; t;hÞð Þ:n ¼ fdðx; t;hÞ on @NX ðbÞ

Tðx; t;hÞ ¼ Tdðx; t;hÞ on @DX ðcÞ

Tðx; t ¼ 0;hÞ ¼ T0ðx;hÞ on X ðdÞ

8>>>>><
>>>>>:

ð1Þ

In the remainder, T refers to the set of admissible temperatures
Tðx; t; hÞ 2 T , satisfying (1c) and (1d).

2.2. Quantity of interest

The purpose of the stochastic analysis is to determine reliable
statistical information of a response quantity of Interest I. Note that
since the solution Tðx; t; hÞ is a random field, any output computed
from this solution is a random quantity, and therefore the statistics
of this output (expected value, variance. . .) are the relevant
information to be estimated. In this article, the assumption is made
that the quantity of interest may be expressed as a scalar quantity
linearly dependent on Tðx; t; hÞ: The purpose of the stochastic
analysis is to determine reliable statistical information of a
response quantity of Interest I. Note that since the solution
Tðx; t; hÞ is a random field, any output computed from this solution
is a random quantity, and therefore the statistics of this output
(expected value, variance. . .) are the relevant information to be
estimated. In this article, the assumption is made that the quantity
of interest may be expressed as a scalar quantity linearly depen-
dent on Tðx; t; hÞ:

IðhÞ ¼ ‘IðTðx; t; hÞÞ; ð2Þ

where ‘Ið�Þ is a deterministic linear functional.

2.3. Reference solution

A reference solution is obtained using a non-intrusive approach
that decouples the discretization of the physical space and the
stochastic space, represented here by X and H. This can be
described in two steps:

1. First, a few simplifications are introduced in order to
solve the problem (1) and to obtain a numerical approximation
of Tðx; t; hÞ for a realization of h (freezing the randomness):
– Karhunen-Loéve truncation (Section 2.3.1): the Karhunen-

Loéve infinite expansion is approximated by limiting the
sum to a finite number of terms, NKL,

– spatial discretization (Section 2.3.2): the problem (1) is
approximated as the application of the FEM yields a spatially
discrete system,

– time discretization (Section 2.3.3) is operated by means of the
Crank-Nicholson time integration scheme.

2. Then, NMC Monte Carlo simulations fhkgk¼1;...;NMC
are used to

obtain an approximation of the probability density function of
the quantity of interest IðhÞ.

Details of each of the aforementioned steps are given
hereafter.
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