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a b s t r a c t

We present a robust and efficient form of the smoothed finite element method (S-FEM) to simulate
hyperelastic bodies with compressible and nearly-incompressible neo-Hookean behaviour. The resulting
method is stable, free from volumetric locking and robust on highly distorted meshes. To ensure inf-sup
stability of our method we add a cubic bubble function to each element. The weak form for the smoothed
hyperelastic problem is derived analogously to that of smoothed linear elastic problem. Smoothed strains
and smoothed deformation gradients are evaluated on sub-domains selected by either edge information
(edge-based S-FEM, ES-FEM) or nodal information (node-based S-FEM, NS-FEM). Numerical examples are
shown that demonstrate the efficiency and reliability of the proposed approach in the nearly-
incompressible limit and on highly distorted meshes. We conclude that, strain smoothing is at least as
accurate and stable, as the MINI element, for an equivalent problem size.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Low-order simplex (triangular or tetrahedral) finite element
methods (FEM) are widely used because of computational effi-
ciency, simplicity of implementation and the availability of largely
automatic mesh generation for complex geometries. However, the
accuracy of the low-order simplex FEM suffers in the incompress-
ible limit, an issue commonly referred to as volumetric locking, and
also when the mesh becomes highly distorted.

To deal with these difficulties various numerical techniques
have been developed. A classical approach is to use hexahedral ele-
ments instead of tetrahedral elements due to their superior perfor-
mance in plasticity, nearly-incompressible and bending problems,
and additionally their reduced sensitivity to highly distorted
meshes. However, automatically generating high-quality conform-
ing hexahedral meshes of complex geometries is still not possible,
and for this reason it is desirable to develop improved methods
that can use simplex meshes. Significant progress has, however,
been done in this direction [1].

Another option is to move to higher-order polynomial simplex
elements. While they are significantly better than linear tetrahe-
dral elements in terms of accuracy this is at the expense of

increased implementational and computational complexity, and
sensitivity to distortion.

Nodally averaged simplex elements [2,3] can effectively deal
with nearly-incompressible materials, but they still suffer from
an overly stiff behaviour in certain cases [4].

Meshfree (or meshless) methods [5–7] are another option
because of their improved accuracy on highly-distorted nodal lay-
outs, but the locking problem is still a challenging issue that needs
careful consideration [8]. To improve the non-mesh based meth-
ods, B-bar approach [9,10], which is appropriate not only to handle
incompressible limits but also to model shear bands with cohesive
surfaces, can be considered. Additionally, because they are sub-
stantially different to the FEM, they are not easily implemented
in it existing software.

Isogeometric Analysis (IGA) is another high-order alternative
and the interested reader is referred to [11,12]. Moreover for the
further studies for fractures undergoing large deformations, edge
rotation algorithm can be an another option in large plastic strains
[13,14].

Mixed and enhanced formulations are another popular remedy
for volumetric locking [15,16], but they retain the sensitivity to
mesh distortion of the standard simplex FEM [17].

Another approach, and the one that we employ in this paper, is
the strain smoothing method developed by Liu et al. [18,19]. The
strain smoothing method has the advantage over the above meth-
ods that it improves both the behaviour of low-order simplex ele-

http://dx.doi.org/10.1016/j.compstruc.2016.05.004
0045-7949/� 2017 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author at: Université du Luxembourg, Faculté des Sciences, de la
Technologies et de la Communication, Campus Kirchberg, 6, rue Coudenhove-
Kalergi, L-1359, Luxembourg.

Computers and Structures 182 (2017) 540–555

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate/compstruc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2016.05.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.compstruc.2016.05.004
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.compstruc.2016.05.004
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


ments with respect to both volumetric locking and highly distorted
meshes, while being simple to implement within an existing finite
element code.

The basic idea of strain smoothing is based on the stabilised
conforming nodal integration (SCNI) proposed in the context of
meshfree methods by Chen et al. [20,21]. Later SCNI was extended
to the natural element method (NEM) by Yoo et al. [22], and was
shown to effectively handle nearly-incompressible problems.

In the smoothed finite element method (S-FEM), the domain is
divided into smoothing domains where the strain is smoothed as
shown in Fig. 1. Typically, the geometry of the smoothing
domains is derived directly from the standard simplex mesh
geometry. Then with the divergence theorem, numerical integra-
tion is transferred from the interior to the boundary of the
smoothing domains [23,24]. Critically, this procedure results in
a discrete weak form without the Jacobian, the matrix used to
map basis function derivatives from the reference element to
the real element in the mesh. In the standard FEM the Jacobian
is required to construct the derivatives of the basis functions.
When distorted meshes are used in the standard FEM, the Jaco-
bian becomes ill-conditioned, and this affects the accuracy of
the method. Because the Jacobian is not required in S-FEM, the
resulting method is significantly more robust than the standard
FEM on highly distorted meshes.

It is also known that the S-FEM produces stiffness matrices that
are less stiff than the standard FEM, and in certain cases this prop-
erty can be used to overcome volumetric locking. Since S-FEM was
introduced, its properties have been studied from a theoretical
viewpoint [18,19,25–29], extended to n-sided polygonal elements
[30] and applied to many engineering problems such as plate
and shell analysis [31–34].

Particularly, Bordas et al. [35] recalled the central theory and
features of S-FEM and showed notable properties of S-FEM which
depend on the number of smoothing domains in an element. More-
over, Bordas et al. [35] presented the coupling of strain smoothing
and partition of unity enrichment, so called SmXFEM, with exam-
ples of cracks in linear elastic continua and arbitrary cracks in
plates.

The contribution of this paper to the literature is to present a
robust, efficient and stable form of the smoothed finite element
methods to simulate both compressible and nearly-compressible
hyperelastic bodies. We study two forms of smoothing (node-
based and edge-based) and compare their relative merits. A key
ingredient of our method is to add cubic bubbles to each element
to ensure inf-sup stability. Although bubbles have been suggested
before in the context of linear elastic S-FEM by Nguyen-Xuan and

Liu [36] here we make the non-trivial extension to deal with
hyperelastic problems. Finally we present a rigorous testing proce-
dure that demonstrates the superior performance of our approach
over the standard FEM.

The outline of this paper is as follows; first, we briefly review
the idea fundamentals of S-FEM. In Section 3 we formulate the
non-linear S-FEM for hyperelastic neo-Hookean compressible
materials. To demonstrate the accuracy and convergence proper-
ties of the proposed methods we present extensive benchmark
tests in Section 4. Finally, conclusions and future work directions
are summarised in Section 5.

2. Smoothed finite element method (S-FEM)

It was shown in numerous studies that S-FEM provides a higher
efficiency, i.e. computational cost versus error than the conven-
tional FEM for many mechanical problems. We list below some
of the strengths and weaknesses of each variant: the cell-based
smoothed FEM (CS-FEM), the edge-based smoothed FEM
(ES-FEM), the node-based smoothed FEM (NS-FEM), and the
face-based smoothed FEM (FS-FEM).

� Volumetric locking. NS-FEM can handle effectively nearly-
incompressible materials where Poisson’s ratio v? 0.5 [37],
while ES-FEM suffers from volumetric locking. Combining NS-
and ES-FEM gives the so-called the smoothing-domain-based
selective ES/NS-FEM which also overcomes volumetric locking
[38]. In the case of CS-FEM, volumetric locking can be avoided
by selective integration [39].

� Upper and lower bound properties. In typical engineering
analysis with homogeneous Dirichlet boundary conditions the
NS-FEM gives upper bound solution and FEM obtains lower
bound solution in the energy norm. While, in the case of prob-
lem with no external force but non-homogeneous Dirichlet
boundary conditions, NS-FEM and FEM provide lower and upper
bounds in the energy norm, respectively [40,41].

� Static and dynamic analyses. ES-FEM gives accurate and stable
results when solving either static or dynamic problems [42]. In
contrast, although NS-FEM is spatially stable, it is temporally
unstable. Therefore, to solve dynamic problems, NS-FEM
requires stabilisation techniques [43,44]. CS-FEM can also be
extended to solve dynamic problems [45].

� Other features. In NS-FEM, the accuracy of the solution in the
displacement norm is comparable to that of the standard FEM
using the same mesh, whereas the accuracy of stress solutions

Fig. 1. (a) Three smoothing domains in the three-node triangular (T3) finite mesh for edge-based smoothed FEM (ES-FEM), (b) three smoothing domains in the three-node
triangular (T3) finite mesh for node-based smoothed FEM (NS-FEM).
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