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a b s t r a c t

Classical shell finite elements usually employ low-order polynomial shape functions to interpolate
between nodal displacement and rotational degrees of freedom. Consequently, carefully-designed fine
meshes are often required to accurately capture regions of high local curvature, such as at the ‘boundary
layer’ of bending that occurs in cylindrical shells near a boundary or discontinuity. This significantly
increases the computational cost of any analysis.
This paper is a ‘proof of concept’ illustration of a novel cylindrical axisymmetric shell element that is

enriched with rigorously-derived transcendental shape functions to exactly capture the bending bound-
ary layer. When complemented with simple polynomials to express the membrane displacements, a sin-
gle boundary layer shell element is able to support very complex displacement and stress fields that are
exact for distributed element loads of up to second order. A single element is usually sufficient per shell
segment in a multi-strake shell.
The predictions of the novel element are compared against analytical solutions, a classical axisymmet-

ric shell element with polynomial shape functions and the ABAQUS S4R shell element in three problems
of increasing complexity and practical relevance. The element displays excellent numerical results with
only a fraction of the total degrees of freedom and involves virtually no mesh design. The shell theory
employed at present is kept deliberately simple for illustration purposes, though the formulation will
be extended in future work.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Membrane action is the preferred load-carrying mechanism for
shells, enabling efficient and economical use of material. As mem-
brane forces can be obtained easily through equilibrium alone and
are valid throughout much of the shell, membrane theory often
forms the basis of design. However, bending actionmust be consid-
ered to fully take into account the effect of kinematic boundary
conditions and to identify the range of validity of membrane action
[1,2]. Bending theory is significantly more complex mathemati-
cally, and even the very simplest linear axisymmetric variant
requires the solution of a fourth-order non-homogeneous differen-
tial equation [3–6]. The high order of the governing equations
belies a rich set of underlying physical behaviours, chief among
them being the possibility of displacements and stress fields
exhibiting rapid variations and high magnitudes near boundaries
or discontinuities. This ‘boundary layer’ decays exponentially away
from boundaries at a rate governed by the bending half-

wavelength k, settling on a particular integral corresponding to
membrane action [2].

As analytical solutions cannot easily be obtained even for sim-
ple shell bending problems [2,6–10], the finite element method
(FEM) is widely employed instead [11–15]. Numerous shell ele-
ment formulations exist, all based on polynomial shape functions
of varying order. Membrane action is very ‘smooth’ and easily cap-
tured, but convergence to the solution in the vicinity of a bending
boundary layer requires careful local mesh refinement [2,15,16].
Multi-segment or multi-strake shells may exhibit several boundary
layers, each requiring a locally-refined interpolation field and con-
tributing greatly to the total number of degrees of freedom in the
system. For this reason, symmetry is exploited wherever possible
for computational efficiency, although even axisymmetric shells
exhibit boundary layers.

2. Scope of the study

The central concept behind the present study is to formally dis-
tinguish between membrane and bending components of the dis-
placement solution at the level of the interpolation field, and to
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enrich the field through specialised bending shape functions
derived rigorously from the governing differential equation. In this
way the boundary layer is included natively within the finite ele-
ment, leading to significant gains in accuracy and substantial
economies in terms of total degrees of freedom, modelling effort
and mesh design. The idea of enriching the interpolation field to
account for specific local and global phenomena is not new and
is the basis of the eXtended or General FEM (XFEM or GFEM) meth-
ods [17–20], but to the authors’ knowledge it is the first time that
such an approach has been applied to shell elements specifically to
account for localised bending phenomena. The complexity is pur-
posefully limited here to the very minimum required to demon-
strate the validity of the approach: the proposed Cylindrical Shell
Boundary Layer (CSBL) element currently supports linear stress
analysis of axisymmetric loading on thin cylindrical shells, based
on a simple Kirchoff-Love shell bending theory [21,22]. However
the use of a general constitutive relation enables the study of iso-
tropic, uniformly orthotropic and meridionally-stiffened ‘smeared’
shells [22–24], making it an efficient tool for the axisymmetric
bending stress analysis of multi-segment cylinders, silos, tanks
and pressure vessels even in its present form. The performance
of the linear CSBL element is illustrated on three example problems
of increasing complexity, two of which relate directly to non-trivial
practical axisymmetric design problems.

3. Axisymmetric bending theory for thin orthotropic cylindrical
shells

The idea of using specialised shape functions to capture the
boundary layer specifically in cylindrical shells stems directly from
an analytical result in classical shell bending theory. Here, the
mathematical distinction between the homogeneous and particu-
lar solutions of the governing differential equation corresponds
directly to physical bending and membrane action respectively.
The kinematic relations are kept linear in what follows, as even a
simple axisymmetric thin-walled shell theory based on the
Kirchhoff-Love assumptions [7,21] captures the mechanics of
meridional bending together with its associated boundary layer.
This has the additional benefit that the solutions for the normal
w and meridional u displacements are decoupled, permitting the
origin of the proposed shape functions to be illustrated clearly.
However, the linear constitutive relations are generalised to allow
for the study of both isotropic and uniformly orthotropic cylinders
via the ‘smeared’ stiffness approach [23,24]. Lastly, as the transcen-
dental bending shape functions of the proposed CSBL element are
obtained directly from the analytical solution to the governing dif-
ferential equation, some level of detail in presenting its derivation,
however classical, is necessary here.

Under axisymmetric conditions, a cylindrical shell of radius r
and thickness t may be subject to pressure loading normal pn

and meridionally tangential pz to the midsurface (dimensions of
[F L�2]), as shown in Fig. 1. Axisymmetry of the loading, boundary
conditions and geometry ensures that only five stress resultants
act on the mid-surface of the thin shell: the meridional and cir-
cumferential membrane stress resultants nz and nh ([F L�1]), the
bending moment stress resultants mz and mh ([FL L�1]), and the
meridional transverse shear stress resultant qz ([F L�1]). There are
no displacements or gradients in the circumferential direction.

Considering equilibrium of an elementary cylinder section of
length dz and arc length rdh yields the following equations:

dnz

dz
¼ �pz; nh ¼ r pr þ

dqz

dz

� �
and qz ¼ �dmz

dz
ð1Þ

The following constitutive and kinematic relations are used in
this illustration [22]:
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where the C’s represent appropriate stiffness coefficients that will
be discussed later. The resultants mh and qz need not be included
in Eq. (2) as their corresponding generalised strains are zero. Com-
bining Eqs. (1)–(3) and simplifying the result leads to a linear
fourth-order ordinary differential equation in w only, the normal
midsurface displacement:
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Solving the homogeneous part of the equation requires finding
the complex roots of the corresponding characteristic polynomial:

aX4 þ 2bX2 þ c ¼ 0 where

a ¼ r C11C33 � C2
13
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b ¼ �C12C13

c ¼ r�1 C11C22 � C2
12

� �
8>>><
>>>: ð5Þ

Setting Y = X2, this becomes a polynomial of second order in Y,
for which the discriminant is:

d ¼ b2 � ac ¼ C2
12C
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which is negative if and only if the following inequality is satisfied:

C2
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It is important to establish that this inequality will indeed
always be satisfied, as this governs the functional form of the gen-
eral solution to the homogeneous equation. For a very general uni-
formly orthotropic shell with elastic moduli Ez and Eh, Poisson’s
ratio m and thickness t, and ‘smeared’ meridional stiffeners of mod-
ulus Es, cross-section area As, second moment of area Is, spacing ds

and eccentricity es, the constitutive matrix [C] is the following [22]:
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Fig. 1. Equilibrium of an element of a thin-walled axisymmetric cylindrical shell.
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