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a b s t r a c t

In the numerical simulation of structural problems, a crucial aspect concern the solution of the linear sys-
tem arising from the discretization of the governing equations. In fact, ill-conditioned system, related to
an unfavorable eigenspectrum, are quite common in several engineering applications. In these cases the
Preconditioned Conjugate Gradient enhanced with the deflation technique seems to be a very promising
approach in particular because an effective deflation space is already at hand. In fact, it is possible to uti-
lize rigid body motions of the system, that can be calculated easily and cheaply, and only the knowledge
of the geometry of problem is required. This paper investigates the advantages of using a Rigid Body
Modes Deflated Conjugate Gradient in the solution of challenging systems arising from structural prob-
lems. Two different situations are analyzed: the ill-conditioning caused by low constraining is addressed
deflating the total rigid body modes, while the one concerning the heterogeneity of the problem by using
the rigid body modes of separate components. Moreover, the implemented method is highly parallel and
therefore suitable for High Performance Computing. Numerical results show how both approaches per-
formed successfully in reducing the overall system solution time cost and iterations required for
convergence.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The efficient solution to linear systems of equations is a key
issue in the numerical simulation of engineering problems [1–5].
Considering a generic system of partial differential equations
(PDEs), it is usually solved through a discretization method, such
as for instance the Finite Element Method (FEM), in order to
approximate the continuous solution and represent it in a discrete
way, i.e. by an algebraic system of linear equations. In this way the
PDE system can be solved by means of linear algebra tools.

It is well known that, most of times, the solution of such linear
systems is the most time consuming part of the entire solution pro-
cess, hence many different techniques were developed in the last
decades to accelerate this process. Nowadays Krylov Subspaces
Methods are considered among the most effective approaches.
These iterative techniques are suitable for linear systems whose
dimension may be very large (even billions of unknowns) and

whose structure is characterized by high sparsity and irregularity.
In this paper we will restrict our analysis to Symmetric Positive
Definite systems (SPD), which arise from the FEM discretization
of the structural problems examined. The best suited, and probably
most famous, Krylov strategy utilized for SPD systems is the Con-
jugate Gradient (CG).

To be effective, as any other Krylov method, CG convergence is
accelerated by means of a preconditioner, thus giving rise to the
Preconditioned Conjugate Gradient (PCG). Generally speaking, a
preconditioner is a matrix which, multiplied by the original system
matrix, is able to significantly improve convergence.

Unfortunately, for the solution of some categories of structural
mechanics problems the application of a preconditioning matrix
alone generally leads to poor results. These problems are all char-
acterized by an eigenspectrum in which a limited number of eigen-
values has a value significantly smaller than the others (several
orders of magnitude). This heterogeneity in the spectrum results
in a strongly oscillating behavior of the residual during CG
iterations and therefore slows down noticeably the overall conver-
gence. Two typical examples characterized by such ill-conditioned
behavior of the residual will be addressed in this paper: solids
which have a low degree of constraints and heterogeneous
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materials whose components differ significantly in stiffnesses, thus
leading to a matrix with high contrasts in the coefficients. For the
sake of completeness, a third source for ill-conditioning of the stiff-
ness matrix may be due to a high aspect ratio of elements. This is
the case when for example rough meshing methods are used on
complex geometries, and/or when the elements during deforma-
tion become highly distorted [6,7]. This aspect has been not con-
sidered in this paper and will be investigated in future works.

A strategy to solve these ill-conditioned systems may be to
draw back to direct solution methods that have been traditionally
the only way to cope with highly ill-conditioned systems. The two
major drawbacks of direct methods are memory consumption and
scalability on large HPC system, two issues recently addressed by
the work of Koric adn Gupta [8] and Gupta et al. [9].

Going back to iterative solvers, for these ill-conditioned systems
a different approach is developed, and the traditional precondition-
ing matrix is used in conjunction with an other preconditioning
technique known as deflation. The latter is a projection method
that can annihilate the influence of the slowly converging compo-
nents of the residual, thus improving the CG performance notice-
ably. It is known that these components correspond to the
eigenvectors associated to the small eigenvalues. Therefore, a limit
of the strategy is that computation of eigenvectors is a rather
expensive procedure.

A very interesting fact concerning the use of the deflation
technique in structural problems is that an effective approximation
of slowly converging components, whose computation is manda-
tory for the application of deflation, is known a priori and can be
evaluated cheaply. The idea, illustrated in [10] and here recalled,
is to utilize the rigid body modes of the system, whose computa-
tion is trivial and requires only the geometry of the structural
system as input. For the sake of clearness, note that explicit FEA
(Explicit Dynamics) don’t have any issues with rigid body modes
considered in this paper, which focuses on static solution of FEM
problems.

In [10] rigid body modes deflation is utilized to improve the
solution of problems concerning heterogeneous materials. In this
paper we further exploit this approach and apply the same idea
also to poorly constrained structural problems, whose strong ill-
conditioning also represent an obstacle in engineering applica-
tions. Moreover, a fully parallel implementation of the method is
here presented, which allows its efficient use on the modern High
Performance Computing (HPC) systems. To ensure parallelizability
of the entire algorithm, we adopt an efficient preconditioning
matrix suitable for parallel computations known as Factored
Sparse Approximate Inverse (FSAI) [11]. Preconditioners usually
utilized in PCG are generally based on incomplete factorizations,
as the well known Incomplete Cholesky (IC), and are mostly
sequential, thus compromising the quality of the overall parallel
implementation. FSAI instead is inherently parallel and we include
in our code the open source FSAIPACK software package that
allows one to compute easily an efficient preconditioner tailored
for the problem at hand. This fully parallel implementation of the
method is, at the best of our knowledge, rather new and has not
been previously used in conjunction with deflation.

Deflation was firstly proposed by Nicolaides [12] and Dostàl
[13], who both developed a deflated version of the Conjugate Gra-
dient. Moreover Nicolaides showed how this projective method
can be used efficiently in conjunction with a preconditioning
matrix as well. In [14] Mansfield shows interesting applications
of the deflated version of the CG in different engineering fields.
Since that pioneering work many other authors used the strategy
in several applications, combining the method with other precon-
ditioning strategies available. Approaches similar to the one devel-
oped by Nicolaides are the algorithms proposed by Kolotilina [15]
and Saad [16]. The deflated CG presented in this contribution, how-

ever, is slightly different and follows the one illustrated in [17] by
Vuik et al. Deflation was also implemented in conjunction with
other Krylov strategies such as GMRES [18,19]. We remark that
deflation is a very general strategy and that it may be virtually uti-
lized with every Krylov method. This is well explained in [20],
where Gutknecht illustrates a theoretical framework for Krylov
methods enhanced with deflation and augmentation techniques,
focusing mainly on GMRES, MinRES and QMR. In [21] Gaul et al.
develop this subject presenting a common framework for deflated
and augmented Krylov strategies. A complete overview concerning
the state of the art of the deflation technique is reported in [22] and
in Section 9 of [23]. Deflation presents similarities with other pre-
conditioning techniques based on subspace corrections. This group
of preconditioners is often defined as projective preconditioners and
include methods such as deflation, augmentation, Multi-Grid (MG)
and Domain Decomposition (DD). The use of a projective precondi-
tioner in conjunction with a preconditioning matrix is common
and the resulting algorithms are called two-level preconditioners.
A detailed analysis on different two-level approaches involving
PCG is presented in [24], where the deflation method appear to
be quite an efficient strategy. Interesting comparisons between
deflation and other types of projective preconditioners deriving
from MG and DD approaches are reported also in [25–27]. Defla-
tion technique has been utilized in several applications concerning
different fields of engineering. In [12] Nicolaides shows how the
needed eigenvectors may be approximated using a piecewise con-
stant interpolation over subdomains selected on the discretized
grid, and applied this strategy on a system resulting from the
FEM discretization of the Poisson’s equation. This approach, known
as subdomain deflation has many similarities with MG and DD
approaches and is further analyzed in [22], where Frank and Vuik
utilize it in many practical examples and find interesting bounds
for the spectrum of the projected matrix. Generally speaking, the
choice of the deflation space may be done considering physical
aspects of the analyzed problem, as in our case, or may be based
on algebraic characteristics of the matrix. In [28], for instance,
Moutafis et al. utilize suitable partition algorithms for selecting
such space in deflating a preconditioned version of GMRES. Other
authors calculate approximate eigenvectors (see for example [16]).

The idea of approximating the needed eigenvectors with an a
priori chosen deflation subspace has been exploited by several
others authors. In [29], for instance, deflation method is used in
FEM simulations concerning a magnetic field and in [17] Frank
and Vuik show an effective way to approximate eigenvectors in
diffusion problems characterized by high contrasts in the coeffi-
cients. Finally in [10] rigid body modes are used as approximated
eigenvectors for the deflation method, that is the approach further
exploited in the present algorithm.

The first part of this paper is dedicated to the exploitation of the
main theoretical aspects on which the deflation method is based
and to the resulting algorithm. Subsequently some aspects of the
numerical implementation are illustrated. Finally extensive
numerical results are presented. Starting from a very simple exam-
ple, more realistic applications are illustrated. The efficient paral-
lelization of the proposed method is confirmed by the results of
scalability tests.

2. Accelerating the Conjugate Gradient through deflation

Consider the solution of a symmetric positive definite (SPD) lin-
ear system of equations:

Ax ¼ b ð1Þ

by means of the Conjugate Gradient method (CG). The convergence
rate of CG strictly depends on the spectrum r Að Þ of the system
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