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a b s t r a c t

WYPiWYG hyperelasticity is a family of computational procedures for determining the stored energy
density of soft materials. Instead of assuming the global analytical shape of these functions (the model),
they are computed solving numerically the differential equations of a complete set of experimental tests
that uniquely define the material behavior. WYPiWYG hyperelasticity traditionally uses an inversion for-
mula to solve the differential equations, which limits the possible types of tests employed in the proce-
dure. In this work we introduce a new method that does not need an inversion formula and that can be
used with any type of tests. We apply the new procedure to determine the stored energy function of pas-
sive ventricular myocardium from five experimental simple shear tests.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Finite element analysis is a widely known, powerful numerical
method employed to solve numerically general boundary value
problems [1]. Since its development in the mid-20th Century, it
has replaced many analytical methods, often based on assumed
shapes of the solution to the problem. Finite elements, as other
modern numerical methods, do not assume the shape of the overall
solution, but compute it using pre-defined local interpolations
between nodal solutions.

Rubber-like materials [2] and soft biological tissues [3], fre-
quently analyzed with finite elements [1], present a highly nonlin-
ear behavior often considered as hyperelastic [4]. Hyperelastic
behavior assumes the existence of a stored energy function such
that no dissipation occurs during cyclic loading. The stored energy
function cannot be measured and the analytical solution obtained
directly from the measured stress-strain behavior needs some inte-
grability conditions difficult to fulfill. The typical solution to deter-
mine the stored energy is not different in essence to many other
semi-inverse methods employed to solve boundary value problems
before the finite elements era. As in the Rayleigh method in struc-
tures, the classical hyperelastic model simply consists in the
assumption of a possible analytical stored energy function, leaving
free some material parameters. These parameters are then
obtained as to best-fit the measured stress-strain behavior [9]. In

essence, the parameters represent the closest solution to the actual
stored energy in the predefined reduced space of global solutions,
or at least they represent its effects on the available tests. The pro-
cedure to obtain these parameters is often not straightforward, and
an extensive variety of optimization algorithms is employed.
Remarkably, the solution obtained is not unique because the prob-
lemmay not have a unique minimum [6]. The different non-unique
material parameter solutions may result in very different finite ele-
ment predictions in general boundary value problems, as largely
reported in the literature [10–12]. We remark that the actual rea-
son for this lack of confidence in finite element solutions is the use
of an insufficient number and variety of tests to properly define the
material behavior under the general loading condition that may be
found at integration points during finite element simulations [6,5].
If a complete set of tests is employed, it is expected that the
obtained numerical solutions are similar in these circumstances
[6,13], at least under moderately large strains.

What-You-Prescribe-Is-What-You-Get (WYPiWYG) hyperelas-
ticity is a different, purely numerical approach, to the problem of
determining the stored energy function of a hyperelastic material
that exactly replicates a complete set of experimental data pre-
sented to the model. It is, in some sense, similar to finite elements
in solving a general boundary value problem. The WYPiWYG
approach does not specify the global shapes of the stored energy
terms, but computes them numerically. It does not employ mate-
rial parameters. The solution is unique, explicit, without the need
of any optimization procedure. Furthermore, it may be exact to
machine precision if desired. The basic idea is to compute the solu-
tion of the stored energy by means of local shape functions, which
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interpolate numerical (nodal) values of the derivative of the stored
energy terms. The computation of these nodal values is the pur-
pose of the numerical procedure. Of course, once the stored energy
is obtained, it may be employed with confidence in predictions of
other boundary conditions employing finite elements as if the
stored energy was an analytical single continuous function
because, in short, it is an analytical piecewise function with the
required smoothness. In fact, we have shown in Ref. [13] that for
the isotropic case, if the procedures are fed with ‘‘experimental”
data (i.e. stress-strain curves) from an analytical model fulfilling
the Valanis-Landel decomposition, the ulterior WYPiWYG predic-
tions under arbitrary loadings are equal to those obtained by the
analytical model. In essence, we have numerically solved the dif-
ferential equations of the experiments to obtain the true solution
in piecewise form. Both the results for nonhomogeneous problems
and the equilibrium iterations are the same. The computational
cost is also comparable.

The WYPiWYG formulations have been developed from the
ideas given in the model of Sussman and Bathe [14], which is
the first WYPiWYG model. The Sussman and Bathe model for iso-
tropic incompressible hyperelasticity employs piecewise cubic
interpolation functions. In order to obtain the nodal values, they
used the Kearsley and Zapas (KZ) inversion formula [15]. This for-
mula is the analytical solution to the stored energy derivative for
materials fulfilling the Valanis-Landel decomposition [16]. The KZ
formula is a convergent series. Usually 20–50 terms are needed
to reach the machine precision at the nodes. Between nodes
the accuracy depends obviously on the number of nodes, but
cubic splines require few nodes to reach indistinguishable solu-
tions. In previous works we have extended the computational
procedure to account for transverse isotropic [17] and orthotropic
[18] incompressible materials using a Valanis-Landel-type
decomposition equivalent to the one employed under infinitesi-
mal deformations. In these works it was necessary to develop a
more general inversion formula to solve the differential
equations. In [13] we extended the procedure for compressible
materials and we have shown that it is in fact a natural,
equation-by-equation, extension of an infinitesimal framework
accounting for bilinear behavior (with possible different moduli
in tension and compression). The method can be considered as
‘‘model-free”, ‘‘data-based” hyperelasticity.

One of the important features of WYPiWYG hyperelasticity, in
contrast to many popular models, is that it recovers the full linear
theory even in the orthotropic case. Obviously it is desirable that
for infinitesimal deformations, the infinitesimal theory is recov-
ered [21–23] and also desirable that this happens at any strain
level, because every incremental (infinitesimal) deformation, even
at large strains, can be considered as an infinitesimal case over a
deformed configuration. From a practical point of view this also
implies that engineering judgment inherited from the infinitesimal
theory may be employed in the analysis of large strain models. For
example, missing experimental data needed to uniquely define the
material behavior may be assumed based on that experience, as for
example Poisson ratios [5] (see also [24]). Experimental evidence
has proved the adequacy of these hypotheses [25].

The predictive capabilities of the WYPiWYG method are excel-
lent. It has been shown that it is capable of predicting the behavior
of a large variety of materials to high accuracy; arteries in [5],
superficial fascia in [20], skin in [19], incompressible rubber in
[6] and compressible polyurethane foam in [13]. We will show also
below excellent predictions for the passive myocardium experi-
ments of Dokos et al. [26]. The models have been implemented
in finite element codes (Dulcinea and Adina) and tested for nonho-
mogeneous deformations in some of these works.

One of the major difficulties in WYPiWYG hyperelasticity is
that, in most practical cases, we need to solve the differential equa-

tions of the experiments by means of an inversion formula, but this
is not always possible. Then, the procedure lacks a desired general-
ity. The purpose of this paper is to generalize the WYPiWYG proce-
dure as to bypass the need of an inversion formula, or any other
add-hoc solution, and bring a procedure of more general applica-
bility. With the new procedure proposed herein, the differential
equations from any complete set of tests, uniquely defining the
material behavior, can be solved numerically, obtaining therefore
an also unique stored energy density in the proposed uncoupled
form that ‘‘exactly” (to any desired precision) predicts the experi-
mentally observed stress-strain behavior.

In the next section we briefly review the piecewise spline inter-
polation equations and recast the interpolation in a new conve-
nient form for our purpose. Thereafter we explain the new, yet
simple computational procedure. Finally we use that procedure
to predict the experimental results on passive myocardium from
Dokos et al. [26]. We also note that the set of tests in Dokos
et al. [26] is incomplete because there are infinite stored energies
even in uncoupled form, and compatible with the infinitesimal the-
ory, that exactly predict the measured stress-strain behavior in
such tests. Therefore, for our purpose, we complete the set of tests
with reasonable assumptions to obtain a unique stored energy
solution which preserves all independent deformation modes of
the infinitesimal theory, and which can be further used with con-
fidence in finite element predictions.

2. Piecewise spline functions in matrix form

Although different interpolation functions are possible, and
may be more adequate in some cases, the piecewise cubic splines
have some desirable properties of continuity and the
determination is quite simple, see Refs. [17,18] for uniform and
non-uniform spaced data sets, respectively. For the matter of
notation simplicity, and without loss of generality of the
procedure explained, we address herein the case with uniform
spacing.

Assume that we have a set of known points xi; yif g,
i ¼ 1; . . . ;N þ 1; that are to be interpolated by means of cubic poly-
nomials forced to fulfill some smoothness conditions. It is conve-
nient to normalize each subdomain xi; xiþ1½ � defining a new
normalized variable within that subdomain

ni xð Þ ¼ x� xi
xiþ1 � xi

2 0;1½ � ð1Þ

Then, each polynomial pi ni xð Þð Þ, i ¼ 1; . . . ;N, is defined in the unit-
length i� th subinterval as

pi nið Þ ¼ ai þ bini þ cin
2
i þ din

3
i with 0 6 ni 6 1 and i ¼ 1; . . . ;N

ð2Þ
where N is the number of intervals. For each subdomain
yi ¼ pi n ¼ 0ð Þ and yiþ1 ¼ pi n ¼ 1ð Þ. Between the current interval
and the previous and subsequent ones, continuity of the first and
second derivatives, which we denote by Yi and Y 0

i respectively, is
also enforced; mathematically—note the abuse of notation in
pi xð Þ ¼ pi n xð Þð Þ ¼ pi nð Þ

p0
i�1 ni ¼ 1ð Þ ¼ p0

i ni ¼ 0ð Þ ¼: Yi

p00
i�1 ni ¼ 1ð Þ ¼ p00

i ni ¼ 0ð Þ ¼: Y 0
i

�
ð3Þ

where the accent �ð Þ0 implies derivative with respect to the basic
variable x, i.e. p0

i ¼ dpi=dnið Þ=h. However, we note that in the case
herein addressed for simplicity all intervals have the same length,
so h :¼ xiþ1 � xið Þ ¼ xi � xi�1ð Þ, which cancels out in the previous
equations. It is straightforward to obtain the coefficients of the
polynomials as a function of yi and Yi from Eqs. (2) and (3)1
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