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a b s t r a c t

This paper proposes a general finite-element procedure for the nonlinear analysis of cables based on a
mixed variational formulation in curvilinear coordinates with finite deformations. The formulation
accounts for nonlinear elasticity and inelasticity, overcoming the limitation of recent numerical
approaches which integrate explicitly the global balance of linear momentum for a linear elastic material
with infinitesimal deformations. The formulation uses a weak form of the catenary problem and of the
strain-displacement relation to derive a new family of cable finite elements with a continuous or discon-
tinuous axial force field. Several examples from the literature on nonlinear cable analysis are used to val-
idate the proposed formulation for St. Venant-Kirchhoff elastic materials and neo-Hookean materials.
These studies show that the proposed formulation captures the displacements and the axial force distri-
bution with high accuracy using a small number of finite elements.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Cable structures are widely used in engineering practice
because they offer the advantages of high ultimate strength, flexi-
bility, light weight and prestressing capabilities, among others.
Because the behavior of a flexible cable is highly nonlinear, signif-
icant effort has been invested into developing accurate and eco-
nomical numerical models for it. These models have evolved
from truss elements to elastic elements satisfying the catenary
equation. The survey in Tibert [27] provides a detailed overview
of the different models. The following brief comments highlight
the main features of the two basic approaches and point out some
of their limitations. The simplest approach involves the representa-
tion of the cable as a series of straight truss elements. These are
often based on linear displacement interpolation functions in the
context of infinitesimal-deformation theory [20,17,19]. The geo-
metric nonlinearity is often accounted for with the corotational
formulation [9], involving the transformation of the node kine-
matic variables under large displacements. These elements suffer
from the excessive mesh refinement required to accurately capture
the deformed shape and the axial force distribution, especially
when using linear shape functions and thus a constant axial force
in the element. Also, because these elements are not specifically
formulated as cables, they may exhibit a snap-through instability
at states of nearly singular stiffness.

To address the excessive mesh refinement limitation of simple
truss elements, catenary elements have been proposed. These ele-
ments formulate the global balance of linear momentum assuming
one-dimensional infinitesimal linear elasticity (Hooke’s law) and
obtain the deformed shape by explicit integration [3,29,24,1,2].
Such et al. [24] and Ahmad Abad et al. [1] also proposed a finite-
difference version of this catenary formulation by discretizing the
global balance of linear momentum into n segments.

While catenary formulations give more accurate results than
truss elements for the same mesh discretization, they also have
shortcomings that limit their range of application. First, current
catenary elements do not support extension to finite deformations
and nonlinear material behavior. Second, these elements assume
infinitesimal deformations and integrate the global balance of lin-
ear momentum explicitly without distinction between the 2nd
Piola-Kirchhoff (2nd PK) and Cauchy representations of the axial
force [12, Ch. 9]. Third, this explicit integration does not accommo-
date a consistent mass matrix for dynamic analysis, limiting such
approaches to the use of a lumped mass with the consequence that
a large number of elements is required for accuracy [26]. Finally,
because of the assumption of infinitesimal deformations, the
distributed loads do not evolve consistently with the cable
elongation, resulting in the inaccurate balance of linear momen-
tum in the deformed configuration. To address this problem,
associated catenary elements [3] impose restrictions of the form
wL ¼ ~wl with w and L the load and length in the reference
configuration, and ~w and l the load and length in the current con-
figuration, respectively.
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To address the limitations of truss and catenary cable elements,
this study proposes a new formulation for a family of cable finite
elements with the following objectives:

� Use finite deformation theory to describe the geometric
nonlinearity.

� Solve the balance of linear momentum consistently.
� Accommodate nonlinear elastic material response.
� Can be extended to inelastic material response.
� Develop a robust and versatile finite element implementation to
allow its deployment in a general purpose finite element analy-
sis framework.

The presentation starts with the formulation of the cable kine-
matics under finite deformations in Section 2, and proceeds to
derive the principle of virtual work and weak compatibility rela-
tion in Section 3. Subsequently, Section 4 presents the finite ele-
ment implementation of the weak form of the governing
equations, and discusses the numerical stability requirements of
the formulation. Following a brief discussion of nonlinear elastic
material models in Section 6, the presentation sets the stage for
the subsequent numerical studies by describing first the solution
of the form finding problem with the current formulation in
Section 7. Finally, Section 8 assesses the accuracy and numerical
convergence characteristics of the proposed elements with the
study of cable problems from the literature.

2. Geometry and kinematics

2.1. Geometric preliminaries

Fig. 1 shows a curve C representing an idealized cable in three

dimensions, with reference Cartesian coordinate system fEAg3A¼1.

Define an orthogonal frame fGig3i¼1 at any material point P 2 C
associated with coordinates fnig3i¼1 such that

G1 ¼ dX
dn1

; G1 � G2 ¼ 0; kG2k ¼ 1; G3 ¼ G1 � G2

kG1 � G2k ð1Þ

where n1 is the selected parameter for describing the curve. Note

that the frame fGig3i¼1 is orthogonal but, in general, not orthonor-

mal. Indeed, the metric tensor ½Gij� for the frame fGig3i¼1 is of the
form

½Gij� ¼ ½Gi � Gj� ¼
kG1k2 0 0
0 1 0
0 0 1

264
375 ð2Þ

Therefore, the differential vector dX along the curve C is

dX ¼ dX
dn1

dn1 ¼ G1dn
1 ð3Þ

The corresponding dual frame fGig3i¼1 satisfies

Gi ¼ GijG
j ) Gi ¼ GijGj ¼ G�1

ij Gj ð4Þ

where ½Gij� represents the dual metric tensor.

2.2. Finite-deformation kinematics

With the preceding definitions, let the cable C undergo the
motion vðn1Þ : R3 ! R3 in Fig. 2, such that vðXðn1ÞÞ ¼ x, where X
represents the position vector in the reference configuration P0

and x, the position vector in the current configuration P. Upper
case letters denote the variables in the reference configuration
and lower case letters, the variables in the current configuration.
Note that the cable motion can be completely described by the sin-
gle coordinate n1, because the cable is idealized as a one-
dimensional manifold [6].

In the global Cartesian coordinate system, X ¼ XAEA defines the
reference coordinates, whereas x ¼ xiei defines the current coordi-
nates. Note that, in Cartesian coordinates, EA ¼ EA and ei ¼ ei. Let

fEAg3A¼1 � feig3i¼1, for simplicity.

Convecting the curvilinear coordinates fnig3i¼1 with basis fGig3i¼1

into the coordinates fgig3i¼1 with basis fgig3i¼1, the deformation gra-
dient F and the right Cauchy-Green tensor C are [23]

F ¼ @x
@X

¼ gi � Gi; C ¼ FtF ¼ gijG
i � G j ð5Þ

Thus, FG1 ¼ g1 and G1 ¼ F�1g1. The Green-Lagrange strain tensor E
is

E ¼ 1
2
ðgij � GijÞGi � G j ð6Þ

Hence the only nonzero strain arises in the G1 direction. It is

E11 ¼ 1
2
ðkg1k2 � kG1k2Þ ð7Þ

The relevant stretch k of the problem in the G1 direction is

k2 ¼ ds
dS

� �2

¼ dx � dx
dX � dX ¼ g11

G11
¼ kg1k

kG1k
� �2

ð8Þ

Consequently,

E11 ¼ 1
2
ðk2 � 1ÞkG1k2 ð9Þ

The displacement vector u depends only on the curvilinear coordi-
nate n1 of the material point P 2 C
uðXðn1ÞÞ ¼ xðXðn1ÞÞ � Xðn1Þ ¼ uAðn1ÞEA ð10Þ
For the referential displacement gradient H in curvilinear coordi-
nates, one observes that the only nonzero derivative with respect

to fnig3i¼1 is

du
dn1

¼ dx
dn1

� dX
dn1

¼ g1 � G1 ð11Þ

As a result,

H ¼ du
dn1

� G1 ð12Þ

so that the relationship between the Green-Lagrange strain E and
the displacement field u isFig. 1. Geometry for general cable.
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