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a b s t r a c t

The presence of a hole, cut-out or void in a structure makes it difficult to be modelled for calculating nat-
ural frequencies. A theoretical basis for simplifying the modelling of cut-outs in a structure by attaching a
negative structure is presented. The Dynamic Stiffness Method has been used to prove that this method
yields the required natural frequencies. The derivations also show the presence of additional natural
frequencies which correspond to the vibration of the positive and negative parts vibrating together while
the actual structure with the hole or cut-out usually remains stationary.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Determination of natural frequencies, critical loads and stress
distribution in solid bodies with voids, holes, cut-outs or damages
is increasingly becoming important in applications such as optimi-
sation and damage detection [1–6]. The natural frequencies of such
systems are commonly obtained using the Finite Element Method
(FEM) [7–16]. There have also been some papers [17–19] which
use analytical procedures such as the Rayleigh-Ritz Method
(RRM) [20–22] in which the potential and kinetic energy terms
of the structure are found by subtracting the energy terms associ-
ated with the void part from that of the larger structure (without
the void), by taking the displacement forms of the void to be the
same as those of the larger structure. In one recent approach
[23], called the Independent Coordinate Coupling Method (ICCM),
the displacement forms of the void and the larger domain are con-
strained to have similar values using Lagrangian type constraints in
an average integral form. This method has been generalized in [24]
which deals with the modelling of plate-like structures with holes
as a basis for a structural optimisation process. Once the coupling
is done, the energy terms corresponding to the void are subtracted
from that of the larger structure and the Rayleigh-Ritz minimisa-
tion is then carried out.

This work stems from the authors’ attempts to investigate the
possibility of using the modes of both the structure without any
void and a negative structure corresponding to the void and then
combining the two sets of modes while enforcing the embedding
continuity conditions by the penalty method [25,26] or the
Lagrangian Multiplier Method (LMM) [27] in a Rayleigh-Ritz proce-
dure. Numerical experimentation with this idea using discrete sys-
tems, beams and plates with cut-outs and holes showed that while
it is possible to obtain the required frequencies, the presence of
additional natural frequencies and the difficulty in choosing appro-
priate shape functions and constraint enforcement methods pose
some challenges [28]. Thus the authors proceeded to study the the-
oretical basis for combining positive and negative structures, using
the Dynamic Stiffness Method (DSM), the derivations and findings
of which are presented in this paper, along with some numerical
results. The paper shows that the required natural frequencies
are obtainable from the model incorporating a negative structure,
and explains the additional frequencies.

2. The theoretical basis

2.1. Existence of natural frequencies of the structure with a hole in the
proposed model

In order to develop a theoretical framework, the question will
first be addressed of whether or not all the required natural
frequencies and modes of at least a certain class of structures
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containing voids can be obtained through the proposedmethod. The
hypothesis taken is that these characteristics are obtainable by com-
bining themodes of positive and negative structures, i.e. by embed-
ding a negative structure with known modes into a larger positive
structure with known modes, and analysing the combined system.

Consider the case of a structure A which contains a hole, repre-
sented in Fig. 1a by a rectangular platewith a circular hole.Nowcon-
sider two elastic structural bodies C+ and C�, having identical shapes
that would fill the void in A, one (C+) with the same distribution of
elastic and inertial properties as that of A, and the other (C�) with
negative properties but of the same magnitude. In this case C+ and
C� will be circular plates. Then consider joining C+ and C� bymeans
of a very stiff elastic continuum S1, which acts as a penalty against
anydifferential displacementbetween the twoelements. The result-
ing structure has the potential to exist as an empty element (E). The
term ‘empty’ is used here to indicate that the element could be sub-
jected to any dynamic displacementwithout inducing any forces (or
moments) at the boundaries. This empty element state occurs only
in modes in which C+ and C� vibrate together with the same dis-
placement. The combined unit, being empty, would not change the
behaviour of any structure to which it is attached as there will not
be any unbalanced forces or moments. This combined unit is now
connected to Structure A along the commonboundarywith the hole
(in this case having a circular circumference), by constraining the
degrees of freedom to be the same. Thismay be done either by using
a penalty parameter or by using sufficiently large number (say r) of
discrete constraints. It may be seen that the resulting structure A0

(see Fig. 1b) is capable of possessing all the natural frequencies
and modes of A, because it was formed just by the addition of the
empty element E. Furthermore, if the penalty stiffness is sufficiently
large, from the asymptotic modelling theorems [29], the combina-
tion of A and C+ is equivalent to B (the rectangular plate without
any hole). Connecting B to C� using S1 gives B0 as shown in Fig. 1c.
It is therefore deduced that the natural frequencies and modes of
B0 would include those of A. The hole in a plate is only an illustration
but the same argument will hold for a body with cut-outs or voids.
This will be proved formally for discrete systems in the next section.

2.2. Proof of existence of the required natural frequencies for discrete
systems

Consider a discrete structural system A (Fig. 2a) having n1 vibra-
tory degrees of freedom which is obtainable from a larger system B
(Fig. 2b) by removing some elements. A represents the structure

with a cut-out and B is a larger structure which would be the result
of filling the cut-out part. For simplicity, the discrete systems are
represented with spring-mass arrangements. The proposed
method involves attaching a negative structure C� (Fig. 2c) to the
larger positive structure B to obtain B0 as illustrated in Fig. 2d. Thus
C� would potentially cancel the stiffness and inertia in a part of A
so as to produce A if it is rigidly connected to its positive counter-
part within B. The masses associated with the degrees of freedom
of A are shown as lightly filled circles and rectangles. The circles
correspond to the internal degrees of freedom that do not lie on
the common boundary with the hollow domain while the rectan-
gles correspond to degrees of freedom that are on the boundary.
The set of internal degrees of freedom of A will be denoted by vec-
tor qAi and the common degrees of freedom will be denoted by qe.
Let the natural frequencies of A be xA, a vector set containingxA,1,
xA,2, . . ., xA,n1. Now consider another discrete system C+ (Fig. 2e)
withm vibratory degrees of freedom which is the positive counter-
part of C� and represents the component of B if it did not have the
cut-out. This means System C� has the same magnitude of stiffness
and inertial properties as C+ but with opposite sign. The masses
associated with the positive structure are shown as black circles
or squares and their negative counterparts are shown as white cir-
cles and squares with dotted boundaries. Now consider linking
these to system A at a common boundary where the masses asso-
ciated with the shared degrees of freedom qe are shown in squares.
The circles depict the masses that are not associated with a com-
mon boundary with A (i.e. at internal degrees of freedom). These
sets of internal degrees of freedom of C+ and C� are labelled qPi

and qNi respectively, to indicate the internal degrees of freedom
of the positive and negative structures. The natural frequencies
of C+ are xC = [xC,1, xC,2, . . ., xC,m]. As both inertial and elastic
(stiffness) properties of C� are equal and opposite to those of C+,
each term in the equation of motion of C� would be equal and
opposite to the corresponding term for C+. This means the natural
frequencies and modes of C� are identical to those of C+. For the
purpose of this proof, it is necessary to consider System A0 shown
in Fig. 2f, which is formed by joining A, C+ and C� rigidly at the
common boundary (i.e. the degrees of freedom at the boundary
between the three systems are common for them) and joining
other corresponding degrees of freedom between C+ and C� by
means of elastic springs S1.

As the connection between A and C+ in A0 is rigid,

A0 � B0 ð1Þ
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Fig. 1. Example of plates combining positive and negative structures.
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