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a b s t r a c t

We propose a completely meshfree procedure aimed at the time-harmonic analysis of electromagnetic
wave scattering from conducting targets. The problem is described by the vector wave equation with a
divergence-free constraint. We propose a mixed formulation whose unknowns are the electric field vec-
tor and a Lagrange multiplier. We investigate the well-posedness of the variational problem and con-
struct compatible meshfree function spaces able to describe solutions in any geometry, in two and
three dimensions. The method does not depend on any kind of parameter tuning. We illustrate its per-
formance in a number of solutions through experimentally derived convergence rates and comparisons
with other techniques.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Meshfree (or meshless) methods refer to a broad category of
numerical procedures applied to the solution of differential equa-
tions. In some cases, the methods can be interpreted as a general-
ization of finite element methods [1–5]. The applications in
research using meshfree methods are numerous, following the
publication of some papers introducing these methods in computa-
tional mechanics, like the Smooth Particle Hydrodynamics (SPH)
method [6], the Element Free Galerkin (EFG) method [7], the Local
Boundary Integral Equation (LBIE) method [8,9], the Finite Spheres
method [10,11], and the Meshless Local Petrov-Galerkin (MLPG)
method [12].

Specific meshfree methods can be quite different from others.
Features like the imposition of boundary conditions and the con-
struction of interpolation functions, for example, are dealt with
very differently depending on the method. However, there is one
characteristic that is common to all meshfree methods: They rely
on nodes scattered freely throughout the computational domain.
There is no mesh or grid connecting these nodes. Indeed, it is
one of the aims in the development of meshfree methods to cir-
cumvent the difficulties associated with the generation of a mesh,

particularly in three dimensions. In some cases the methods con-
struct independent basis functions defined on small regions
around the nodes, called subdomains, spheres, or patches. These
and generalizations thereof have recently been labeled ‘overlap-
ping finite elements’ because the overlapping is the main charac-
teristic distinguishing them from traditional finite elements [1,2].
The computational domain is covered by these overlapping ele-
ments. Comprehensive studies of meshfree methods in the solu-
tion of problems in mechanics led to the current research in
applications of ever-increasing levels of complexity [13–21].

In electromagnetics, the introduction of meshfree methods as
an alternative to the use of finite element methods came a few
years later [22–25]. Some research in this field is focused on collo-
cation procedures, i.e., methods which deal with the differential
equations in strong form. They usually use Radial Point Interpola-
tion (RPIM) basis functions, and can be seen as suitable alternatives
to finite difference methods [26–28]. While simpler to implement,
these methods suffer from instabilities or may not be fully mesh-
free [29].

Meshfree methods based on weak forms have also been consid-
ered. Some research has been focused on the EFG method [30–33],
but because the EFG method relies on background cells to perform
the numerical integrations, it is not considered a truly meshfree
method. On the other hand the MLPG method is a truly meshfree
procedure and has been used in electromagnetics, see for example
[34–36].
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It is by now an established fact that meshfree methods based on
weak forms can be used in electrical engineering, see also [37–39].
However, all the solution examples in [30–39] deal with scalar field
problems. The extension of meshfree procedures based on varia-
tional forms to vector field problems in Rd (d ¼ 2 or 3) is a signifi-
cant step due to the difficulty in satisfying the divergence-free
condition, and only few research efforts have been published, see
for example [40]. Using finite element methods, vector field prob-
lems in electromagnetics are usually solved employing Nédélec
edge elements [41–44]. In this approach, degrees of freedom are
associated with each edge in the mesh (generally formed by, but
not restricted to, triangles in 2D and tetrahedra in 3D), and the
resulting basis functions are such that their divergence is zero
within each element (but not at the element boundaries) [43].

In a true meshfree setting, we do not have the support of a
mesh, which poses some difficulty in constructing appropriate vec-
tor basis functions. Some results using a meshfree procedure based
on weak forms in the solution of vector electromagnetic field prob-
lems are for example given in [40]. The strategy in that work is to
define vector basis functions on the patches. Despite the success,
there are at least three points that deserve attention. First, the
method has not been tested on curvilinear geometries. Second,
the imposition of essential boundary conditions is based on
Nitsche’s method [45], in which the formulation incorporates to
the weak forms extra regularization terms that depend on adjusta-
ble (tunable) stability parameters. Third, the vector basis functions
defined on the patches must be subjected to an orthogonalization
procedure in order to ensure that they are strongly linearly
independent.

It is our aim to conceive a method that simply uses nodes scat-
tered on the domain and scalar nodal basis functions. It does not
resort to vector basis functions. The divergence-free condition is
enforced weakly via a Lagrange multiplier that arises naturally
when the double-curl operator in the vector wave equation is
replaced by the vector Laplacian. We thus arrive at a system similar
to the steady-state incompressible Navier-Stokes equations of
hydrodynamics [46], for which there are reliable solution methods
based on nodal finite elements [47,48]. The Lagrange multiplier p
together with the scattered electric field Es constitute the
unknowns of the problem. However, in this mixed formulation
the electric field and the Lagrange multiplier must reside in differ-
ent function spaces. It is well-known that for a mixed formulation
these spaces must be compatible via the inf-sup condition [48,49]
(a fact used in the meshfree solution of a problem in mechanics
in [50]). Also, since the conducting objects that scatter the incident
wave can be of any shape, we show how to embed information
about the shape of the scatterer into the meshfree spaces.

Considering the imposition of the essential boundary condi-
tions, we impose these directly as in the standard finite element
method, because our nodal basis functions satisfy the Kronecker
delta property at the domain boundaries.

In the following sections we propose our method and then pro-
ceed to illustrate its application in several examples. Appendix A
gives some discussion of the inf-sup condition which must be sat-
isfied in order for the discretization to be reliable.

2. The differential equations of wave scattering

Let the conducting object be represented by a closed subset
R � Rd, as in Fig. 1. In this work, the canonical orthonormal basis
for Rd is represented as fbx1; . . . ; bxdg. The time-harmonic scattering
of an electromagnetic wave by a perfect electric conductor (PEC) in
free space is described in the differential formulation by the sys-
tem of equations [43]:

$� $� Es � k20E
s ¼ 0; in X; ð1aÞ

$ � Es ¼ 0; in X; ð1bÞ

bn � Es ¼ �bn � Einc:; on @X; ð1cÞ

lim
r!1

br � $� Es ¼ jk0E
s: ð1dÞ

The function Es : X ! Cd is a phasor; once it has been calculated,
the real scattered electric field is given by Es ¼ RefEsejxtg, where
x ¼ 2pf (f is the wave frequency), Re denotes the real part of a
complex number, j ¼

ffiffiffiffiffiffiffi
�1

p
, and t represents time. The scattering

problem is stated in the unbounded domain (see Fig. 1):

X ¼ Rd � R; ð1eÞ
with the boundary:

@X ¼ @R: ð1fÞ
In (1a) and (1d), k0 ¼ x ffiffiffiffiffiffiffiffiffiffil0e0

p
is the propagation constant in free

space; l0 and e0 are the free-space magnetic permeability and
electric permittivity, respectively. Since there are no losses, k0 is
a real number. On the surface of the PEC object, the boundary con-
ditions are given by bn � E ¼ 0, where bn is an outward-pointing
unit normal vector at the surface @X of the domain (and which
points towards the interior of R). The total electric field is

E ¼ Es þ Einc:, given by the sum of the scattered and incident fields,
where the incident field is prescribed [51]. The expression in (1d) is
the radiation boundary condition, where br is the unit vector in the
direction of the radius vector r (from the origin O to any point of
R3), and r is the Euclidean norm of r, i.e., r ¼ krkbr ¼ rbr . This con-
dition ensures that the scattered field Es propagates away from
the PEC object [43].

The electric field in (1a) is constrained by the condition (1b),
that is, Gauss’ law for the free-space with no sources. To develop
our formulation, we use the vector identity $� $� Es ¼ �$2Esþ
$ð$ � EsÞ, so that (1a) becomes:

$2Es þ k20E
s � $ð$ � EsÞ ¼ 0; in X: ð2Þ

Fig. 1. The geometry of the scattering problem, illustrating the nodal distribution
over the domain and along its boundary. (a) The computational domain X
comprises the region between the outer contour @P and the surface @R of the
PEC object, which is represented by the white region (hole). (b) The PML
corresponds to the layer adjacent to @P. (c) The square patches, or ‘overlapping
elements’ overlap each other (the collection of all overlapping elements associated
with the nodes in the figure is not shown). (d) The patches do not conform to the
geometry of the boundaries, as evidenced by the three patches at the PEC surface
@R. (e) For the nodes I and J, located on @R, frI

1;r
I
2g and frJ

1;r
J
2g are the normal and

tangential unit vectors at their locations, whereas for the interior node K , frK
1 ;r

K
2g

are the unit vectors bx1 and bx2 along the coordinate axes X1 and X2, respectively.
These ideas can naturally be extended to three-dimensional analysis.
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