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a  b  s  t  r  a  c  t

A  novel  mesh-free  approach  for solving  differential  equations  based  on  Evolution  Strategies  (ESs)  is  pre-
sented. Any  structure  is assumed  in the equations  making  the  process  general  and  suitable  for  linear
and  nonlinear  ordinary  and  partial  differential  equations  (ODEs  and  PDEs),  as well  as systems  of ordi-
nary  differential  equations  (SODEs).  Candidate  solutions  are  expressed  as  partial  sums  of Fourier  series.
Taking  advantage  of  the  decreasing  absolute  value  of the  harmonic  coefficients  with  the  harmonic  order,
several ES steps  are  performed.  Harmonic  coefficients  are  taken  into  account  one by  one  starting  with  the
lower  order  ones.  Experimental  results  are  reported  on several  problems  extracted  from  the  literature
to  illustrate  the  potential  of  the proposed  approach.  Two  cases  (an  initial  value  problem  and  a  boundary
condition  problem)  have  been  solved  using  numerical  methods  and  a  quantitative  comparative  is  per-
formed.  In  terms  of  accuracy  and storing  requirements  the proposed  approach  outperforms  the  numerical
algorithm.

© 2012  Elsevier  B.V.  All rights  reserved.

1. Introduction

Differential equations are mathematical equations for one or
several unknown functions that relate the values of the functions
themselves and their derivatives of various orders. Differential
equations play a prominent role in engineering, physics, eco-
nomics, and other disciplines. Some important examples are the
Newton’s Second Law in dynamics, the Maxwell’s equations in elec-
tromagnetism, the heat equation in thermodynamics, Einstein’s
field equation in general relativity, Schrödinger equation in quan-
tum mechanics or the Navier–Stokes equations in fluid dynamics
[6].

Some simple differential equations admit solutions given by
explicit formulas. But in the general case, only approximate solu-
tions can be found. Among the engineering community, the most
popular methods for solving differential equations use numeri-
cal analysis techniques such as finite element method (FEM) [21],
finite difference method [14], or finite volume method [11]. These
approaches relied on a grid or a mesh for discretizing the equations,
bringing them into a finite-dimensional subspace. The original
problem is reduced to the solution of algebraic equations.

On the other hand, mesh-free methods work with a set of arbi-
trary distributed points without using any mesh that provides the
connectivity of these nodes. Some examples of mesh-free meth-
ods are smoothed particle hydrodynamics (SPH), diffusive element
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method (DEM) and point interpolation method (PIM) among others
[12].

Other mesh-free methods have its inspiration in the artificial
intelligence field. For instance Lagaris et al. [10] use a feed forward
neural network to codify the solution of this type of problems. The
trial solutions are computed as a sum of two  parts. The first part
satisfies the initial/boundary conditions and contains no adjustable
parameters. The second part is constructed so as not to affect the
initial/boundary conditions. This approach is problem dependent
and in some cases could be difficult to split the candidate solutions
in the two terms. Neural network weights and bias are opti-
mized using a quasi-Newton Broyden–Fletcher–Goldfarb–Shanno
method. This approach has been successfully applied to a system of
partial differential equations which models a non-steady fixed bed
non-catalytic solid-gas reactor [15]. In this last work, the boundary
condition error is added to the cost or fitness function as a penalty
term.

Nowadays an increasing interest in solving differential equa-
tions using artificial neural networks is observed. In [19] a
Multilayer Perceptron and radial basis function neural network
are successfully applied to the nonlinear Schröndinger equation
in hydrogen atom. Yazdi and Pourreza [24] combine a neural net-
work and a fuzzy system to solve some simple first and second
order ordinary linear differential equations. Fast convergence is
achieved training the adaptive network-based fuzzy inference sys-
tem in unsupervised way. In [3] other mesh-free numerical method
for solving PDEs based on integrated radial basis function networks
with adaptive residual subsampling training scheme is presented.
Numerical experiments solving several PDEs show that this algo-
rithm with the adaptive procedure requires fewer neurons to attain
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the desired accuracy than conventional radial basis function net-
works. A different approach dealing with neural networks consist
of solving a family of differential equations using traditional meth-
ods and training a neural network for building surrogate models.
Following this line, work [5] presents a new hybrid adaptive neural
network with modified adaptive smoothing errors based on genetic
algorithm to construct a learning system for complex problem solv-
ing in fluid dynamics. The system can predict an incompressible
viscous fluid flow represented by a stream function through sym-
metrical backward-facing steps channels.

Recently new methods for solving differential equations using
Genetic Programming (GP) have been reported. These approaches
can be considered mesh-free methods because the derivatives
are computed symbolically, so any node connectivity is needed.
Sobester et al. [20] propose a technique for the mesh-free solu-
tion of elliptic partial differential equations where least-squares
collocation principle has been employed to define an appropri-
ate objective function, which is optimized using GP. In that work
no particular function basis is used, but symbolic regression is
performed. This makes the search space very large. Another GP
approach can be seen in [8] where polynomials are used for solv-
ing the convective-diffusion equation. In the same line of research,
Tsoulos and Lagaris [23] use a similar technique, with the novelty
of evolving the candidate solutions using Grammatical Evolution
(GE) [13]. This technique has been employed successfully for solv-
ing the matrix Ricatti differential equation for nonlinear singular
system [1]. GE has been used as well for enhanced the constructed
neural method in [22]. The main advantage of this last approach
is that the user does not choose a priori the number of neuron
cells. In that contribution local search is employed over some
individuals.

Seaton et al. [18] investigate the influence of the problem
complexity and perform a search analysis when differential equa-
tions are solved within an evolutionary framework. They show
that reducing the search space can improve significantly the algo-
rithm performances. A possible approach for reducing the search
space dimension is using some kind of function basis for build-
ing candidate solutions. This idea is used by Kirstukas et al. [9],
where a hybrid GP approach from an engineering perspective is
employed. In that approach, for the particular case of linear dif-
ferential equations, a modified Gram–Schmidt algorithm is used
to reduce the set of general solutions located by GP to a function
basis set.

In the present work a novel mesh-free method for solving dif-
ferential equations is reported. Candidate solutions are expressed
as partial sums of Fourier series. In order to simplify the problem,
an even periodic expansion of the solutions is done in such a way
that all the sine coefficients are vanished. This representation can
be regarded equivalent to a Discrete Cosine Transform (DCT) [17]
which has been successfully used in several science and engineer-
ing applications, as for lossy compression of audio (MP3) and image
(JPEG). With the chosen solution representation, the problem of
solving differential equations is transformed into an optimization
one, where the differential equation residuals and the boundary
condition errors are minimized. The optimal Fourier coefficients
are sought using Evolution Strategies (ESs). In order to systematize
the process, the harmonic searching is done in a progressive way
starting with the lowest order harmonic and using a different ES
cycle to find the optimum value for each one.

The rest of the paper is organized as follows: In Section 2 a
description of the proposed approach is given. In Section 3 a set
of test cases extracted from the literature is described and exper-
imental results are reported. Section 4 gives some qualitative and
quantitative comparisons with numerical methods and other evo-
lutionary approaches. Finally, the conclusions and some future
work guides are outlined in Section 5.

2. Method description

In this section the proposed method is described. First the
mathematical statement of the problem is given in Section 2.1.
The particular coding of candidate solutions using Fourier series
is explained in Section 2.2. Each optimal harmonic coefficient is
sought using several ES steps. Section 2.3 describes these particu-
lar steps, and Section 2.4 explains how the steps are combined for
solving the global optimization problem.

2.1. Statement of the problem

Using the same notation than Sobester et al. [20] but extend-
ing the original problem to systems of differential equations, we
consider the general equation

Ly(x) = f(x) in  ̋ ⊂ R
d (1)

subject to the boundary conditions

By(x) = g(x) on ∂˝,  (2)

where L and B are differential operators in the space x ∈ R
d and

y(x) denotes the unknown solution vector. Functions f(x) and g(x)
denote source terms, so only depend on x, but not on y or its deriva-
tives. From a general point of view, y(x), f(x) and g(x) belong to
the set of vector-valued functions R

d→ R
m.  ̋ ⊂ R

d is a bounded
domain and ∂  ̋ denotes its boundary.1 Note that if d = 1 and m = 1,
we have an ODE problem. If d = 1 and m > 1, a SODE problem is man-
aged and, finally, if d > 1 and m = 1, a PDE problem is established. The
solution vector satisfying (1) and (2) can be computed solving the
following Constrained Optimization Problem (COP):

Minimize :

∫
˝

‖Ly(x) − f(x)‖2 dx

Subject to:

∫
∂˝

‖By(x) − g(x)‖2 dx = 0
(3)

where || · || denotes the Euclidean norm in R
d space. This problem

is discretized using a set of collocation points C = {(xi)|i=1,...,nC
⊂

˝}  situated within the domain and as well on the boundary B =
{(xj)|j=1,...,nB

⊂ ∂˝}.  Finally the original COP is transformed into a
Free Constrained Optimization Problem defining a cost function as
follows

F(y)= 1
d · (nC + nB)

⎡
⎣ nC∑

i=1

‖Ly(xi)−f(xi)‖2+ϕ

nB∑
j=1

‖By(xj)−g(xj)‖2

⎤
⎦,(4)

where ϕ is a penalty parameter. Note that the cost function is
obtained dividing the residuals by the total number of collocation
points d · (nC + nB) in a similar way  than Parisi et al. [15]. Other
authors [1,10,20] do not make this normalization, which makes
their values more dependent on the number of collocation points.

2.2. Candidate solutions

In the proposed approach, each component y(x) of the trial
solution is expressed as a partial sum of a Fourier series. The peri-
odic expansion of y(x) from the original definition range to all R

d

is always performed using even functions. Therefore all the sine
Fourier coefficients are vanished. In order to define this expansion,
first some notation must be introduced. For each coordinate xk with
k = 1, . . .,  d, variables xk,min and xk,max are defined as the minimum

1 This notation corresponds to elliptic equations appearing in the solution of
boundary value problems. Other kind of differential equations such as initial value
problems can be treated in a similar way.
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