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a b s t r a c t

The optimal design of regulators is often based on the use of given, fixed nominal values of initial
conditions, external loads and dynamic parameters of the control system. However, due to variations
of material properties, tasks to be executed, modeling errors, etc., the model parameters are not exactly
known and given quantities. In addition, the state of the system cannot be observed or measured exactly
there are always some observational/measurement errors. Thus, a predetermined (optimal) regulator
should be robust, i.e., the regulator should guarantee satisfying results also in case of observational errors
and errors in the selection of the initial conditions, external load parameters, dynamic parameters, etc.
Since uncertainties can be modeled and recorded very efficiently by probabilistic terms, in contrast to
other approaches in optimal regulator design, the occurring errors are modeled here by realizations of
random variables having a given or at least partly known probability distribution. Thus, instead of calcu-
lating optimal regulators by solving very complex minimax optimization problems, here, robust optimal
regulators can be found by means of stochastic optimization methods. Using Taylor expansion methods
for calculating the occurring expectations, stochastic optimal regulators can be determined by determin-
istic optimization problems which can be handled partly analytically for additive as well as multiplicative
measurement errors. Moreover, the procedure indicates how the gain matrices must be selected in order
to get stable perturbation equations for the sensitivities. Finally, the given procedure is applied to the
important field of active control of mechanical structures. An illustrative example is given.

� 2016 Published by Elsevier Ltd.

1. Introduction

The optimal design of regulators is often based on the use of
given, fixed nominal values of initial conditions, load and other
model parameters. However, due to variations of the material prop-
erties, measurement errors (e.g. in case of parameter identification),
modeling errors (complexity of real systems), uncertainty on the work-
ing environment, the task to be executed, etc., the true initial condi-
tions, external load and further model parameters, like sizing
parameters, mass values, gravity centers, moments of inertia, fric-
tion, tolerances, adjustment setting error, etc., are not known
exactly in practice. Hence, a predetermined (optimal) regulator
should be ‘‘robust”, i.e., the controller should guarantee satisfying
results also in case of variations of the initial conditions, load and
other model parameters.

Robust controls have been considered up to now mainly for
uncertainty models based on given fixed sets of parameters, like
multiple intervals, assumed to contain the unknown, true parame-
ter. In this case one requires then often that the controlled system

fulfills certain properties, as e.g. certain stability properties for all
parameter vectors in the given parameter domain. If the required
property can be described by a scalar criterion, then the controller
design is based on a minimax criterion, such as the H1-criterion,
see e.g. [1,4,9,10].

Since in many cases parameter uncertainty can be modeled
more adequately by means of stochastic parameter models, in
the following we suppose that the parameters involved in the reg-
ulator design problem are realizations of a random vector having a
known or at least partly known joint probability distribution. The
determination of an optimal controller under uncertainty with
respect to varying material properties, manufacturing procedures,
working neighborhoods, modeling assumptions, etc., is a decision
theoretical problem. Criteria of the type ‘‘holds for all parameter vec-
tors in a given set” and the minmax-criterion are very pessimistic
and often too strong. Indeed, in many cases the available a priori
and empirical information about the dynamic system and its work-
ing neighborhood allows a more adequate, flexible description of
the uncertainty situation by means of stochastic approaches. Thus,
it is often more appropriate to model unknown and varying initial
values, external loads, measurement errors and other model
parameters as well as modeling errors, e.g. incomplete representa-
tion of the dynamic system, by means of realizations of a random
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vector, a random function with a given or at least partly known
probability distribution. Consequently, the optimal design of
robust regulators is based on an optimization problem under
stochastic uncertainty [2,16,26].

1.1. Stochastic optimal design of regulator

For the consideration of stochastic parameter variations as well
as other uncertainties within the optimal design process of a regu-
lator one has to introduce – as for any other optimization problem
under (stochastic) uncertainty – an appropriate deterministic
substitute problem. In the present case of stochastic optimal
design of a regulator, hence, a map from the state or observation
space into the space of control corrections, one has a control prob-
lem under stochastic uncertainty. Then, for the solution of the
occurring deterministic substitute problems the methods of
stochastic optimization, cf. [16,26], are available.

As is well known [3,19,20], the optimization of a regulator pre-
supposes an optimal reference trajectory qRðtÞ and a corresponding
feedforward control uRðtÞ. In case of stochastic uncertainties, the
guiding functions qRðtÞ;uRðtÞ� �

can be determined also by stochas-
tic optimization methods [3,14,21].

The computation of stochastic optimal regulators is based now
on deterministic substitute control problems of the following type:

Minimize the expected total costs composed of (i) the costs arising
from the deviation DzðtÞ between the (stochastic optimal) reference
trajectory and the effective trajectory of the dynamic system and (ii)
the costs for the control corrections DuðtÞ

subject to the following constraints:

– dynamic equation of the underlying stochastic system with the
total control input uðtÞ ¼ uRðtÞ þ DuðtÞ being the sum of the fedfor-
ward control uRðtÞ and the control correction DuðtÞ ¼ uðt;DzðtÞÞ,

– stochastic initial conditions qðt0Þ ¼ q0ðxÞ; _qðt0Þ ¼ _q0ðxÞ for the
state of the system at the starting time point t0,

– conditions for the feedback lawu ¼ uðt;DzðtÞÞ, such asuðt;0Þ ¼ 0
(if the effective state is equal to the state prescribed by the refer-
ence trajectory, then no control correction is needed).

Here, as often in practice, we use quadratic cost functions. The
resulting deterministic substitute problem can be interpreted
again as a control problem for the unknown feedback control law
DuðtÞ ¼ uðt;DzðtÞÞ. A main problem is then the computation of
the (conditional) expectation arising in the objective function.
Since the expectations are defined by multiple integrals, the expec-
tations can be determined in general only approximatively. In the
following, approximations based on Taylor expansions with
respect to the stochastic parameter vector aðxÞ at its conditional
mean a are taken into account. Using quadratic cost functions
and first order Taylor expansions, hence, linearizations, one has
the advantage that often a certain part of the calculations can be
done analytically!

1.2. An important application: active control under stochastic
uncertainty

In Section 6 the present method is applied to the very impor-
tant area of ‘‘active control under stochastic uncertainty”: In order
to stabilize mechanical structures under strong dynamic applied
loads, active control strategies are taken into account [5,22,23].
Without heavy external dynamic disturbances, such as strong
earthquakes, wind turbulences, water waves, etc., mechanical
structures usually are stationary, safe and stable. However, in
case of heavy dynamic disturbances, additional control elements
can be installed enabling active control actions. Active control

strategies for mechanical structures are applied then in order to
counteract heavy applied dynamic loads, which would lead to
large vibrations causing possible damages of the structure.
Describing the structural dynamics by means of a system of first
order differential equations with random parameters for the state
vector (displacement vector q and the time derivative of q),
robust optimal controls are determined in order to cope with
the stochastic uncertainty involved in the dynamic parameters,
the initial values and the applied loadings. The problem is mod-
eled in the framework of optimal control for minimizing the
expected total costs arising from the tracking error (deviation
from the reference trajectory) of the structure and the regulation
costs. A numerical example is given.

Remark 1.1. The present paper is an updated and extended
version of the conference paper [15]. Here, a new Section 1
‘‘Introduction” has been included presenting the state of the art in
this field and the aim of the paper, as e.g. a description of the
advantages of the stochastic optimal regulator design – in
comparison with other regulator optimization methods in case of
uncertainty. The stochastic optimization method for the optimal
regulator design under stochastic uncertainty, as developed in the
paper, has been applied in a new Section 6 to the area of ‘‘Active
Structural Control under Stochastic Uncertainty”. Hence, an impor-
tant practical application from structural design, which demon-
strates the functioning of the proposed stochastic optimization
method, has been included on the one hand, and an extension of
the conference paper into the direction of engineering applications
has been provided on the other hand. Active Structural Control is
an important tool used in optimal structural design to stabilize
structures, like large buildings, by mounting active control units to
counteract large external loads from strong earthquakes, wind
turbulences, water waves, etc. Here, besides randomly varying
structural parameters, also the external loads have an uncertain
character which can be described favorably by means of proba-
bilistic models. A numerical example is given. In addition, the
introduction of this Section 6 describes the reason and aims of
active/semi-active structural control, where appropriate references
on ‘‘active control” are provided: [5,12,18,22–25,27].

Moreover, the following additional improvements and amend-
ments have been provided: (a) In the introduction other, known
possible approaches [1,4,9,10] for regulator optimization under
uncertainty are discussed and compared with the present one. (b)
Then, a result concerning the stability property of the stochastic
optimal closed loop system with a PID-regulator has been
included, see Lemma 4.1. (c) In Chapter 5 (former Chapter 4), a
more explicit representation of the final deterministic control
problem is given. Especially, the system of integro-differential
equations has been converted into a first order differential
equation, see (52d). (d) In the present revision also more details
about the modeling and treatment of measurement/observational
errors are given: The definition of the additive and multiplicative
stochastic measurement/observational errors has been improved.
Furthermore, a more detailed analysis of the influence of mea-
surement errors, see (6a)–(6i), has been given for the case of (i)
additive as well as for the case of (ii) additive and multiplicative
errors.

2. Regulator design under stochastic uncertainty

Feedforward and feedback control is based on the dynamic
equation of the underlying control system

FðpD; qðtÞ; _qðtÞ; €qðtÞÞ ¼ uðtÞ; t P t0 ð1aÞ
qðt0Þ ¼ q0; _qðt0Þ ¼ _q0: ð1bÞ
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