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a b s t r a c t

A coupled hygro-thermo-mechanical computational model is proposed for fibre reinforced polymers, for-
mulated within the framework of Computational Homogenisation (CH). At each macrostructure Gauss
point, constitutive matrices for thermal, moisture transport and mechanical responses are calculated
from CH of the underlying representative volume element (RVE). A degradation model, developed from
experimental data relating evolution of mechanical properties over time for a given exposure tempera-
ture and moisture concentration is also developed and incorporated in the proposed computational
model. A unified approach is used to impose the RVE boundary conditions, which allows convenient
switching between linear Dirichlet, uniform Neumann and periodic boundary conditions. A plain weave
textile composite RVE consisting of yarns embedded in a matrix is considered in this case. Matrix and
yarns are considered as isotropic and transversely isotropic materials respectively. Furthermore, the com-
putational framework utilises hierarchic basis functions and designed to take advantage of distributed
memory high performance computing.
� 2016 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Fibre reinforced polymer (FRP) composites have exceptional
mechanical and chemical properties, including light weight, high
specific strength, fatigue and corrosion resistance, low thermal
expansion and high dimensional stability. They are commonly used
in engineering application including aerospace, ships, offshore plat-
forms, automotive industry, prosthetics and civil structures [1,2].
Textile or woven composites is a class of FRP composites, in which
interlaced fibres are used as reinforcement, which provides full
flexibility of design and functionality due to the mature textile
manufacturing industry [3]. A detailed review, explaining the
design and fabrication of textile preforms including weaving,
knitting, stitching and braiding with their potential advantages
and limitations is given in [4]. As compared to the standard lami-
nated composites, textile composites have better damage and
impact resistance, better through-thickness properties and reduced
manufacturing cost. However, waviness of the yarns in the textile
composites reduces the tensile and compressive strengths [5].

Due to their complicated and heterogeneous microstructure,
Computational Homogenisation (CH) provides an accurate mod-
elling framework to simulate the behaviour of FRP composites
and determine the macro-scale homogenised (or effective)
properties, including mechanical stiffness, thermal conductivity
and moisture diffusivity, based on the physics of an underlying,
microscopically heterogeneous, representative volume element
(RVE) [6–10]. The homogenised properties calculated from the
multi-scale CH are subsequently used in the numerical analysis of
the macro-level structure. A variety of analytical and numerical
homogenisation schemes have been developed for textile based
FRP composites, which are normally based on the existence of an
RVE and focus attention on the mechanical behaviour. Analytical
methods are quick and easy to use but generally give poor estimates
of the homogenised properties and are normally based on oversim-
plified assumptions of the microstructure and states of stress and
strain. In the literature, some of the analytical homogenisation
schemes, with their potential applications and limitations high-
lighted, are given in [10–14]. Numerical techniques, on the other
hand, can accurately estimate the homogenised properties by cap-
turing accurately the intricate micro-structure exactly but are com-
putationally expensive. Examples of numerical homogenisation
schemes applied to FRP composites can be found in [15–20]. A
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review article, summarising some of the analytical and numerical
homogenisation techniques for the mechanical properties of the
textile composite is given in [21].

During their service lives, FRP structures can be exposed to harsh
hygro-thermal environmental conditions in addition to mechanical
loading, which can lead to matrix plasticisation, hydrolysis and
degradation of fibres/matrix interfaces [22–24]. In the long-term,
these processes significantly reduce the mechanical performance
of these structures. Therefore, understanding heat and moisture
transport mechanisms and their effect on the mechanical
performance are fundamental for assessing the long-term use of
FRP structures. Effective diffusivities of FRP composites with imper-
meable fibres were studied in [25] within the context of FEM, con-
sidering the variation in fibre volume within square and hexagonal
unit cells. In [26], effectivemoisture diffusivity as a function of tem-
perature and fibre volume fraction were investigated for FRP com-
posites with permeable fibres using a unit cell approach. For textile
composites, moisture transport was studied in [22,23] as a function
of variation in tow architectural parameters, e.g. towwaviness, tow
cross-section shape andwave pattern. Transientmoisture transport
in multilayer textile composites was investigated in [27]. An anal-
ogy between thermal and moisture transport analysis was used in
[28] to study the moisture diffusion and corresponding weight gain
for carbon braided composites. In [24,29], a multi-scale CH frame-
work based on the hygro-mechanical analysis was proposed while
using a two-dimensional RVEwith randomly distributed fibres in 0�
and 90� directions. A two way coupling was considered between
the mechanical andmoisture transport analysis and amodel reduc-
tion scheme was used to reduce the computational cost. For the
composite material, deformation dependent diffusion at finite
strains was considered in [30]. Masonry wall reinforced with FRP
reinforcement was studied in [31] while considering hygro-
thermo-mechanical analysis. A recent review article [32], explains
different degradation mechanism for FRP composites in connection
with different environmental conditions.

In this paper, a coupled hygro-thermo-mechanical computa-
tional framework based on the multiscale CH is proposed for FRP
composites. At each integration point, an RVE consisting of single
plain weave textile composite is considered, consisting of yarns
embedded in the matrix. Elliptical cross sections and cubic spline
paths are used to model the geometry of these yarns. Separate RVEs
are considered for the heat transfer, moisture transport and
mechanical CH. One-way coupling is considered in this case, i.e.
mechanical analysis is assumed to be dependent on both moisture
transport and thermal analyses but any influence on the moisture
or thermal behaviour due to the mechanical behaviour is ignored.
A degradation model, developed from experimental data relating
evolution of mechanical stiffness over time for given exposure tem-
peratures and moisture concentration was also developed and
incorporated in the proposed computational framework. A unified
approach is used to impose the RVE boundary conditions, which
allows convenient switching between the different RVEs boundary
conditions (linear Dirichlet, uniform Neumann and periodic) [33].
For a given size of RVE the periodic boundary conditions gives a bet-
ter estimation of the homogenisedmaterial properties as compared
to linear Dirichlet and uniform Neumann boundary conditions,
which give an upper and lower limit [33–35] respectively.

The developed computational framework utilises the flexibility
of hierarchic basis functions [36], which permits the use of
arbitrary order of approximation, thereby improving accuracy for
relatively coarse meshes. For the thermal and moisture transport
analyses both matrix and yarns are assumed as isotropic materials,
while for the mechanical analysis, the yarns are considered as
transversely isotropic materials. The required principal directions
of the yarns for the transversely isotropic material model are calcu-
lated from potential flow analysis along these yarns. Furthermore,

distributed memory high performance computing is used to reduce
the computational cost associated with the current multi-scale and
multi-physics computational framework.

This paper is organised as follows. Themulti-scale CH framework
and corresponding implementation of the RVE boundary conditions
are described in Section 2. Transient heat and moisture transport
analyses along with their FE implementation are discussed in Sec-
tion 3. The derivation of the degradation model from the experi-
mental data is next explained in Section 4. The overall multi-scale
and multi-physics computational framework is described in detail
in Section 5. Computation of yarns directions are explained in Sec-
tion 6. A three-dimensional numerical example and concluding
remarks are given in Sections 7 and 8 respectively.

2. Multi-scale computational homogenisation

In multi-scale CH, a heterogeneous RVE is associated with each
Gauss point of the macro-homogeneous structure. Multi-scale CH
gives us directly the macro-level constitutive relation, allows us
to incorporate large deformation and rotation on both micro- and
macro-level and both physical and geometric evolution can be
included on both micro- and macro-level [34]. The multi-scale
CH procedure and corresponding implementation of RVE boundary
conditions is described initially for the mechanical case, which is
subsequently extended to corresponding thermal and moisture
transport cases. The first order multi-scale CH is used in the paper,
the basic principle of which is shown in Fig. 1, where X � R3 and
Xl � R3 are macro and micro domains respectively. Macro-strain

e ¼ e11 e22 e33 2e12 2e23 2e31½ �T is first calculated at each

Gauss point x ¼ x1 x2 x3½ �T of the macro-structure, which is
then used to formulate the boundary value problem on the
micro-level. After solution of the micro-level boundary value prob-

lem, homogenised stress r ¼ r11 r22 r33 r12 r23 r31½ �T
and stiffness matrix C are calculated. Separation of scales is
assumed in the first-order CH, i.e. the micro length scale is consid-
ered to be very small compared to the macro length scale and the
macro-strain field attributed to each RVE is assumed to be uniform.
Therefore, first-order CH is not suitable for problems with large
strain gradient (but can be used for problems subjected to large
strain) and cannot be used to take into account micro-level geo-
metric size effects [7,34]. On the micro-level at any point

y ¼ y1 y2 y3½ �T the displacement field is written as [37–39]

ulðyÞ ¼ eðxÞy þ eulðyÞ; ð1Þ
where ey is a linear displacement field and eul is a displacement
fluctuation. The micro-strain associated with point y is written as

elðyÞ ¼ rsul ¼ eðxÞ þ ~eðyÞ; ð2Þ

where ~eðyÞ ¼ rs~ul is the strain fluctuation at the micro-level and
rs is the symmetric gradient operator. Furthermore, volume aver-
age of the micro-strain is equivalent to the macro-strain:

eðxÞ ¼ 1
V

Z
Xl

elðyÞdXl ¼ eðxÞ þ 1
V

Z
Xl

~elðyÞdXl; ð3Þ

where V is the volume of the RVE. It is clear from Eq. (3) that the
volume average of the strain fluctuation is zero, i.e.

1
V

Z
Xl

~elðyÞdXl ¼ 0: ð4Þ

The micro-equilibrium state in the absence of body force is
written as

divðrlÞ ¼ r � rl ¼ 0; ð5Þ
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