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a b s t r a c t

In this study, the coupling equations of motion of a rotating three-dimensional cantilever beam are
established to study the effects of Coriolis term and steady-state axial deformation on coupling vibration.
In contrast to a previously published method, the present method uses fully nonlinear Green strain–
displacement relationships to derive the coupling terms in the equations of motion. The numerical results
obtained within the rotating speed limit show that the steady-state axial deformation has considerable
effect on the chord-wise bending frequency but not on the flap-wise bending frequency. Moreover, the
Coriolis term does not significantly affect the chord-wise bending frequency.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of rotating cantilever beams have drawn much
attention because such beams are widely used in engineering
applications such as flexible manipulators, thin and long wind
turbine blades, high-speed rotating helicopter rotor blades, and
turbine engine blades. Because of rotational motion, the natural
vibration characteristics of the rotating beams are considerably
different from those of beams without rotational motion. For
accurate operation and precise control of such rotating beams, an
accurate and reliable dynamic model needs to be established.

Accurate modelling of the geometric stiffening effect is one of
the key elements in the dynamic modelling of a rotating cantilever
beam. Several modelling methods have been proposed, such as the
following: (1) a method that directly provides axial centrifugal
loads [1–4], (2) a method that considers the foreshortening effect
in the longitudinal displacement [5–18], and (3) absolute nodal
coordinate formulation [19,20]. Likins et al. [1] and Simo and
Vu-Quoc [2] initially developed the first method. Kaya and Ozgu-
mus [3] used this method to study the bending–torsion coupling
problem of a rotating Timoshenko cantilever beam and analysed
the influence of the bending–torsion coupling effect and Coriolis
term on structural natural frequencies and mode shapes. Banerjee

and Kennedy [4] developed the in-plane free vibration differential
equation of motion and analysed the free vibration characteristics
by using the series solution of the Frobenius method and the Wit-
trick–Williams algorithm. Their analysis was focused on the effects
of the Coriolis term and hub radius.

The method based on the foreshortening effect considers the
effect of longitudinal shrinkage caused by transverse bending in
the calculation of the longitudinal displacement of a rotating can-
tilever beam to obtain the geometric stiffening terms. Vigneron [5]
described this longitudinal displacement and provided a detailed
derivation of the method to obtain the geometric stiffening terms
using the foreshortening effect [6]. By comparing the equation
based on this derivation to the transverse bending vibrational
equation obtained by Likins et al. [1], Vigneron pointed out that
the method based on the foreshortening effect has better versatil-
ity. Kane et al. [7] presented a dynamic modelling method for
rotating beams that was different from Vigneron [6]. Kane’s mod-
elling method described the longitudinal displacement using the
coordinates after deformation, considering factors such as stretch-
ing, bending, and shearing. It also avoided the impact of early cut
off axial strain on later results. In Kane’s modelling method [7],
the coordinates after deformation are used to describe longitudinal
displacement whereas the coordinates before deformation are
used to separate the variables. Addressing this inconsistency,
Hanagud and Sarkar [8] provided a more general description
method that uses the coordinates before deformation to describe
longitudinal displacement and performs variable separation for
the same coordinates. Sharf [9] classified and discussed the
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researches of Kane et al. [7], Likins et al. [1], Vigneron [6], and Simo
and Vu-Quoc [2] in detail in terms of the geometric stiffening effect
and axial displacement problems and compared the differences
among the different modelling methods. El-Absy and Shabana
[10] investigated the effect of the geometric stiffening term on
the stability of the elastic and rigid body modes, and then, using
several models, examined whether longitudinal shrinkage is
included in both the elastic and inertia forces. Yoo and Shin [11]
studied the vibration problem in an in-plane rotating three-
dimensional cantilever beam following the same perspective as
in the case of Kane et al. [7]. They mainly focused on the impact
of Coriolis term on the structural bending vibration characteristics
and determined corresponding Southwell parameters for different
ratios between the hub’s radius and beam length. Li et al. [12] also
considered the effect of Coriolis term on the bending frequency. Liu
et al. [13] established the finite element formulation of rotating
flexible beam, and analysed the effects of inertia forces and elastic
forces related to the coupling displacement on system dynamic
behaviour, respectively. Chung and Yoo [14] established the finite
element formulation of rotating cantilever beam and compared
the bending frequency obtained by using the assumed modes
method from Ref. [11]. Tsai et al. [15] studied the dynamic problem
of rotating inclined Euler beam by co-rotational finite element for-
mulation combined with the rotating frame method, and analysed
the effect of inclination angle on the bending frequency with differ-
ent radius of the hub, slenderness ratios and rotating speed. Kwon
et al. [16] established a structural bending vibrational equation for
wind turbine blades without considering the effect of axial dis-
placement using Kane’s method. The study discussed the effect of
structural gravitational force and the tilt and pitch angle of the

blade relative to the generator shaft on structural displacement
and dynamic stability characteristics. Duan et al. [17] discussed
the global impact dynamic problems of rotating cantilever beam.
The dynamic model was established by considering the longitudi-
nal foreshortening effect caused by the transverse bending dis-
placement, and then analysed the impact process using the
continuous contact force method and contact constraint method,
respectively. The comparison between the experimental verifica-
tion and the former two methods showed the advantages and
weaknesses of the two methods. Fang and Zhou [18] studied the
free vibration problem of the rotating axially functionally graded-
tapered beam. The transverse displacement amplitude function
was expressed in the form of Chebyshev polynomial series. The
effects of material gradient index, rotating speed ratio, hub radius
ratio and taper ratio on bending frequency were analysed.

Berzeri and Shabana [19] introduced a modelling theory based
on the absolute nodal coordinate formulation in detail. They char-
acterised the complex forms of longitudinal and transverse forces
by deriving different models based on different assumptions and
provided explanations for each of them. Berzeri and Shabana [20]
studied the modelling problem of a rotating cantilever beam using
the characteristics of a floating coordinate frame by taking advan-
tage of the absolute nodal coordinate formulation. The study gave a
generalized characteristic equation based on a completely different
perspective, analysed the frequency and mode shape problem of
the structure, and compared the frequency from the Southwell
equation.

Other researchers also investigated the relevant structural
dynamic problems. Warminski and Balthazar [21] studied the non-
linear vibrations of a rotating light beam by using the Galerkin’s

Nomenclature

A cross-section area, m2

Bj the Boolean assembly matrix
E Young’s modulus, N m2

Gj gyroscopic matrix
H coefficient matrix
Iy, Iz second moment of area of the cross-section, m4

i an imaginary number
K j

Axial stretching stiffness matrix

K j
Chord, K

j
Flap transverse bending stiffness matrix

l the length of the element, m
L length of beam in the undeformed configuration, m
m the order of axial stretching circular frequency
M j

Axial mass matrix

M j
Chord, M

j
Flap mass matrix

n the total number of finite elements
NAxial shape function vector
NChord, NFlap shape function vector
pFlap mode shape vector
p̂Chord mass-normalized mode shape vector
P0 arbitrary point on the centerline of the beam in

undeformed configuration
P point P0 in the deformed configuration
q j
Axial nodal coordinate vector

q j
Chord, q

j
Flap nodal coordinate vector

r global position vector of the point P, m
R planar rotation matrix
t time, s
T kinetic energy
u1, u2, u3 total longitudinal and transverse displacements, m

u0 local position vector of an arbitrary point P0, m
uf displacement vector, m
U strain energy
m global velocity vector of the point P, m s�1

V volume of beam, m3

w1, w2, w3 axial, chord-wise and flap-wise bending displace-
ments, m

w1ry, w1rz longitudinal displacement caused by rotating of
the cross-section, m

wcy, wcz longitudinal shrinkage caused by the transverse
bending displacement, m

w1s time-independent steady-state axial deformation, m
w1v time-dependent axial vibration response, m
x horizontal component of P0, m
�x the coordinate of the point on the centre line of the

beam element, m
e11 longitudinal normal strain
g state vector
h angle of rotation, rad
_hl rotating speed limit, rad s�1

q mass per unit volume, kg m�3

rl elastic limit, Pa
xv axial stretching circular frequency, rad s�1

xv0 axial stretching circular frequency without
rotational motion, rad s�1

xFlap flap-wise bending circular frequency, rad s�1

xChord chord-wise bending circular frequency, rad s�1

j superscript, the number of finite elements
‘_’ the derivative with respect to time t
‘0’ the derivative with respect to coordinate x
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