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a b s t r a c t

The numerical manifold method falls into the category of the partition of unity methods. In order to
enhance accuracy, high order polynomials can be specified as the local approximations. This, however,
would incur rank deficiency of the stiffness matrix. In this study, a local displacement approximation
is constructed over a physical patch generated from a four quadrilateral mathematical mesh. All the
degrees of freedom are physically meaningful. The stresses are continuous at all nodes, suggesting that
no stress polish is required. The proposed approximations have the same accuracy as the first-order poly-
nomials, but no linear dependency inherent in the latter.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Mechanical properties of the rock mass is determined by the
rock blocks and various discontinuous structural planes. Many rock
engineering practices have shown that rock mass failure usually
starts from the propagation of internal discontinuity, then large
deformation and large displacement follow, and finally engineer-
ing accidents happen. Thus it is of practical significance to study
the whole process of fractured rock mass, including crack initia-
tion, propagation and coalescence, sliding and finally forming the
deposits. To this end, many numerical methods have been devel-
oped over the decades to solve the fracture problems.

Under the assumption of continuum, the finite element method
(FEM) is the most commonly used in treating the discontinuous
problems. There are mainly two models including the equivalent
continuum model [1] and the joint or interface element model
[2]. There still exist some disadvantages in the simulation of the
crack problems with FEM: the finite element mesh must be in
accordance with the crack; and remeshing is inevitable during
the propagation of cracks.

In order to overcome the defects of FEM as mentioned above,
the extended finite element method (XFEM) [3] and generalized
finite element method (GFEM) [4] have been developed based on
the partition of unity method (PUM). XFEM is an alternative to

meshing or remeshing crack surfaces in computational fracture
mechanics problems due to the concept of discontinuous and
asymptotic partition of unity enrichment of the standard finite ele-
ment approximation spaces [5]. In XFEM, the discontinuity of crack
is simulated by introducing the generalized Heaviside functions; in
addition, enrichment functions are also included to capture the
stress singularity around crack tip more accurately. In principle,
XFEM is not dependent on the finite mesh in tracking the crack,
so it has been widely used in the crack growth problems [6–8].
But it still has difficulties in treating the large displacement prob-
lems. Recently, the strain smoothing technique in the smoothed
FEM [9] (SFEM) proposed firstly by Liu is implanted into XFEM,
which is not insensitive to mesh distortion and has a lower compu-
tational cost [10]. From then on, many successive excellent works
have been done, such as the node-based smoothed XFEM (NS-
XFEM) [11], extension of the strain smoothing technique to the
higher order elements [12], edge-based XFEM (ESm-XFEM) [13]
and combination of XFEM with the scaled boundary finite element
method (SBFEM) [14]. They are all applied to solve the fracture
problems and show good performance. In addition, an adaptive
singular edge-based smoothed FEM (sES-FEM) [15] is a good
improvement of the SFEM for the fracture problems. The newly
developed isogeometric analysis (IGA) [16], which integrates the
methods for analysis and Computer Aided Design (CAD) into a uni-
fied process, shows a great potential in solving the fracture
problems.
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GFEM is nearly the same as the numerical manifold method
(NMM) in essence except for the treatment of fractures and dis-
crete blocks. The latter has been extended for application to rock
mechanics problems with large deformation, whereas GFEM still
has difficulties in simulating the movements of discrete rock block
system [17]. Similarly, GFEM has been developed to simulate the
three-dimensional dynamic crack propagation [18] and the branch
crack problems [19].

Element-free method (EFM) is another continuum-based
method in solving the strong discontinuity problems [20]. In
EFM, the pre-processing is very easy even for those complex
three-dimensional problems, because it only needs to discretize
the problem domain by a group of nodes and the connection
between nodes as in FEM is not necessary. The approximation
functions can be directly constructed by the discrete nodes, so
the mesh dependence is not as serious as in FEM. In treating the
crack propagation problems, there are no mesh distortion and no
need to remesh, which has greatly reduced the complexity. Simi-
larly the enrichment functions as in XFEM can also be included
to improve the accuracy of the stress field around the crack tip.
EFM has been greatly extended to the three-dimensional fracture
problems, such as a local partition of unity enriched element-free
Galerkin method in which crack path continuity can be guaranteed
[21], combination of the cohesive zone model [22], extended
meshfree method without asymptotic enrichment where Lagrange
multiplier field is added along the crack front to close the crack
[23], the meshfree method based on the cracking-particle method
[24] and new development of crack tracking procedure [25]. Fur-
thermore, a detailed review of meshless methods based on the glo-
bal weak forms in solid mechanics can be found in Ref. [26]. The
shape functions in EFM are generally very complex, so the compu-
tation consummation is very large.

Discrete element method (DEM) and discontinuous deforma-
tion analysis (DDA) method are the two discontinuum-based
methods in solving the fracture problems. DEM is firstly proposed
by Cundall to study the mechanical behaviors of discontinuum
such as rock mass [27]. DEM is an explicit algorithmwhich is based
on Newton’s second law. Rock mass is viewed as a series of rigid or
deformable blocks cut by the discontinuities. The contact force
model is represented by the tiny penetration between contact cou-
ples. DDA [28] proposed by Shi is an implicit method, which is
based on the principle of minimum potential energy. Compared
with DEM, DDA allows relatively large time steps and the stiffness
matrix can be calculated by analytical simplex integration method.
Both DEM and DDA allow large deformation, for example, Camones
has utilized DEM to simulate crack propagation and coalescence
[29]. Similarly, DDA has also been applied in predicting the failure
process of the crack [30].

NMM proposed by Shi [31] can solve continuous and discontin-
uous problems of rock mechanics in a unified way. Recently it has
been developed to solve the fourth-order problems [32]. In NMM, a
mathematical patch might be cut into some physical patches, on
which independent local approximations are defined. As a result,
the discontinuity along a crack can be modeled more naturally. A
lot of research work has been done, see Refs. [33–37].

It is no doubt that the high-order NMM with higher precision
will be more suitable for the crack problems than the 0-order
NMM. Here the high-order NMM refers to the first-order (or above)
polynomials as the local approximations on the physical patches;
while 0-order NMM polynomials means that constants are selected
as the local approximations on the physical patches. However, the
use of high-order polynomials is suffering from the linear depen-
dence, where the global stiffness matrix is rank deficient even after
the rigid body displacement modes are removed. The linear depen-
dency issue is called as a ‘nail’ problem by its inventor. More
details can be found in [38].

In this study, aiming at keeping the high precision and eliminat-
ing the linear dependency issue, a new displacement approxima-
tion scheme is proposed. Furthermore, the enrichment functions
used to capture the singular stress field around crack tips are also
included. Then the enhanced NMM is applied to elastic and frac-
ture problems. The linear dependency issue has been resolved.

2. Foundation of numerical manifold method

NMM is based on the two cover systems including the mathe-
matical cover (MC) and the physical cover (PC), so as to solve the
continuous and discontinuous problems in a unified way. It should
be pointed out that MC and PC are not independent from each
other, PC is obtained by cutting MC with the components of the
problem domain, including the boundary, the material interface
and the discontinuity. Here, MC will be formed from a quadrilateral
mathematical mesh.

An MC consists of a finite number of simply connected domains.
Each domain is called as a mathematical patch (MP), which, in this
study, is the union of several quadrilaterals sharing the same node
such as MP-1 and MP-2 in Fig. 1. While deploying the MC, it is not
necessary to force MC to be in accordance with the problem
domain and it only needs to assure that the MC covers the problem
domain completely.

PC is composed of all physical patches. The physical patches are
generated by cutting all the mathematical patches, one by one,
with the components of the problem domain. From one mathemat-
ical patch, therefore, more than one physical patch might be gener-
ated, such as PP-1, PP-2 and PP-i in Fig. 1.

Since physical patches partially overlap, a physical patch might
be partitioned by other physical patch boundaries into disjointed
domains. Each of these domains is referred to as a manifold ele-
ment. As a result, a manifold element is a common domain of sev-
eral physical patches. As shown in Fig. 1, the quadrilateral i-j-m-l
with a segment of crack is a manifold element, which is the com-
mon region of physical patches PP-i, PP-j, PP-m and PP-l. Manifold
elements are basic units in the numerical integration of the weak
form of the problem.

In Fig. 1, there are two types of physical patches. Most physical
patches are simply connected domains containing no crack tip,
which are called nonsingular patches, such as PP-1. While a phys-
ical patch containing a crack tip is called as a singular patch, such
as PP-i, in the center of Fig. 1. For different types of physical
patches, different local approximations will be constructed as fol-
lows. Furthermore, the manifold elements are classified into three
types: (1) normal manifold element covered only by nonsingular
patches; (2) blending manifold element covered by both singular
patches and nonsingular patches; (3) singular manifold element
covered only by singular patches.

In addition, more details about NMM can be found in [34].

3. Construction of local approximations

In this section, a local approximation scheme based on the
quadrilateral mathematical mesh is proposed by introducing new
displacement approximations originating from the quadrilateral
plate element [39] in FEM. The manifold element constructed in
this way is denoted as Quad-P. The items of approximation func-
tions and their properties are firstly presented. Then it is further
extended to solve the linear elastic fracture problems.

3.1. Local displacement approximations on Quad-P

For the sake of completeness, a brief establishment of theQuad-P
approximation functions is presented here. Let x = (x,y) be a point in
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