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a b s t r a c t

Stochastic finite element method (StFEM) is a robust tool for uncertainty quantification of engineering
systems having random properties. Nevertheless, the matrices involved in this method are very large
compared to their deterministic counterparts. Thus, the computational aspects of StFEM are of great
importance to be optimized. In this paper, an efficient StFEM is developed for analysis of structures.
For this purpose, a method based on graph concepts is presented and extended to StFEM and recently
developed stochastic spectral finite element method (StSFEM) procedures. Here, mathematical remedies
are incorporated to enhance the analysis performance. Firstly, a graph theoretical method is presented for
swift numerical solution of Fredholm integral equation arising from Karhunen–Loève expansion, which
greatly reduces the existing computational cost, and can even be applied to the domain without symme-
try. Secondly, a preconditioner is applied to decompose the matrices to Kronecker products of sub-
matrices, and then graph product rules are utilized to solve the governing linear equation of cyclically
symmetric models without inversing the final matrix, while only a small matrix is inversed instead.
The proposed method provides significant improvement in the stochastic structural analysis.
Illustrative examples demonstrate the efficiency and accuracy of the present method as a swift analysis.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical modeling of systems can be either deterministic
or stochastic. When stochastic modeling is used, one can incorpo-
rate uncertainties of an undertaken system, leading to a reliable
design as uncertainty always exists in system properties, inher-
ently. Uncertainties are categorized to aleatoric and epistemic
uncertainties. Aleatoric uncertainty is an intrinsic variability of
an especial quantity (e.g., the ocean wave force on an offshore
structure), whereas epistemic uncertainty is due to lack of cognition
about especial properties of a system, and unlike the aleatoric
uncertainty (e.g., measurement of an underground fault), it can
be decreased through data improvements.

Stochastic Finite Element Method (StFEM) is one of the most
important numerical tools for uncertainty quantification in com-
putational mechanics. Several types of StFEM exist in literature:
perturbation method [1], Monte Carlo Simulation (MCS), StFEM
with spectral decomposition [2] and other methods [3–5]. Devel-
opment in efficient StFEM is still crucial and intriguing study,

despite the fact that modern computers facilitate analysis of
complex and large-scale problems. StFEM model of a problem
needs much more computing system requirements in comparison
to the deterministic FEM model of the same problem. There are
many researches on improving and developing techniques for the
analysis, among which some of them are referred here. Pellissetti
and Ghanem [6] proposed an efficient iterative solvers for linear
equations of StFEM. Panayirci et al. [7] implemented Guyan reduc-
tion for efficient stochastic analysis of structures by condensation
of their deterministic model. Panayirci [8] solved Galerkin-based
polynomial chaos expansion systems with preconditioned Conju-
gate Gradient (CG) solver and Cholesky decomposition. Matthies
and Keese [9] implemented new algorithms for computing the
mean and covariance of the solution of linear and nonlinear elliptic
stochastic partial differential equations. Ullmann [10] proposed a
Kronecker product preconditioner for StFEM reducing the number
of iterations in preconditioned CG solver and also it was easily
invertible. Sousedik and Ghanem [11,12] performed truncated
hierarchical preconditioning for presentation of an effective StFEM
solver. Khaji and Zakian [13] presented a stochastically enriched
spectral finite element method (StSFEM) providing suitable accu-
racy and speed in dynamic analysis, diagonal mass matrix, minimal
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or sub-minimal mesh discretization. They [13] also proposed
spectral finite element method (SFEM) for numerical solution of
Karhunen–Loève Expansion (KLE). In an independent mathemati-
cal research, Oliveira and Azevedo [14] offered SFEM for eigensolu-
tion of Fredholm integral equation of second kind, simultaneously.
Xu [15] accomplished quasi-weak and weak formulation of
stochastic finite elements for static and dynamic problems.
Chowdhury and Adhikari [16] represented a high dimensional
model of StFEM for static and modal structural analyses. Lately,
some studies have been concentrated on efficient stochastic mod-
eling and reduction techniques for uncertainty computations (see
for example [17–19]).

An efficient and swift analysis of an engineering system is called
optimal analysis upon reaching sparse, well-conditioned and well-
structured characteristics matrices of its mathematical model
[20,21]. Optimal structural analysis is particularly effective for iter-
ative analysis of large-scale structures. Recent advances and find-
ings on graph theoretical matrix methods for optimal structural
analysis in computational structural mechanics are comprehen-
sively described in Refs. [20,22]. Numerous investigations per-
formed on deterministic analysis of symmetric structures and
cyclic symmetric structures [23], whereas it is rare on StFEM, based
upon the best knowledge of the authors. Dynamics of cyclic sym-
metric structures was conducted by Thomas [24], and McDaniel
and Chang [25]. Williams [26] presented an algorithm for exact
eigensolution of rotationally periodic structures. Tran [27,28] uti-
lized component modemethod for vibration analysis of cyclic sym-
metry structures. He et al. [29,30] utilized scaled boundary finite
element method for cyclically symmetric domain of heat transfer
and structural mechanics problems. Group theoretic symmetry
recognition for complex structural systems was investigated by
Zingoni [31,32]. On the other hand, graph theory has provided use-
ful technique for optimal analysis of structures [20–22]. Kaveh and
Koohestani [33] formed graph models for regular finite element
meshes. Kaveh and Rahami [34] applied block circulant matrices
in free vibration analysis of cyclically repetitive structures. Koohes-
tani and Kaveh [35] performed efficient buckling and free vibration
analysis of cyclically repeated space truss structures. Kaveh and
Rahami [36] proposed an efficient analysis of repetitive structures
generated by graph products. Koohestani [37] presented an orthog-
onal self-stress matrix for efficient analysis of cyclically symmetric
space truss structures using force method. Koohestani [38]
exploited symmetry in graphs and applied to finite and boundary
elements. The decomposition of generalized eigenproblems for
the free vibration analysis of cyclically symmetric finite element
models was implemented by Koohestani [39].

Stochastic finite element modeling is a time-consuming numer-
ical tool requiring efficient analysis methods. This research pro-
poses an efficient stochastic finite element analysis for regular
structures. Two main strategies are presented for an optimal anal-
ysis in this paper. The first one employs a graph theoretical method
for swift and symmetry-independent numerical solution of Fred-
holm integral equation arising from KLE, leading to substantial
computational time reduction respect to ordinary numerical solu-
tions. The second one develops a method based on recently pro-
posed graph product rules [20,36,39] for stochastic finite element
procedure of cyclic symmetric structures. A preconditioner is
applied to decompose the matrices to Kronecker products of sub-
matrices, and then graph product rules are formulated to solve
the governing linear equation such that a small matrix is inversed
rather than final large matrix (i.e., stiffness matrix). These mathe-
matical remedies are incorporated to accelerate the analysis, while
the accuracy is reserved. The proposed method provides significant
improvement in the stochastic structural analysis. Numerical
examples indicate the efficiency and accuracy of the present
method as an optimal stochastic structural analysis.

2. Preliminaries on graph theory and applications

2.1. A few basic definitions from graph theory

Graph theory is a branch of discrete mathematics which has
many engineering applications. Here, some necessary definitions
and applications in structural mechanics are briefly explained
according to the scope of this paper.

A graph S includes a non-empty set NðSÞ of elements called ver-
tices (nodes or points) and another set MðSÞ of elements called
edges (elements or arcs) together with a relation of incidence
which associates with each member a pair of vertices (not neces-
sarily distinct), called its ends. Two or more edges joining the same
pair of vertices are known as multiple edges, and an edge joining a
vertex to itself is called a loop. A graph with no loops and multiple
edges is known as a simple graph. Two vertices of a graph are called
adjacent if these vertices are the end vertices of an edge. The
degree of a vertex of a graph is the number of edges incident with
that vertex. A complete graph is a graph in which every two distinct
vertices are connected by precisely one edge [20]. Different alge-
braic matrices exist for graph representation, among which the
adjacency matrix A of a graph is needed to be defined here, as

aij ¼
1; if node is i adjacent to node j

0; otherwise

�
ð1Þ

Weighted graph is a graph whose vertices and edges are assigned by
values called weights. Vertex weights and edge weights vectors are
represented as

VW ¼ ½vwi�; i ¼ 1;2;3; . . . ;N
EW ¼ ½ewij�; ði; jÞ ¼ 1;2;3; . . . ;N

ð2Þ

and the adjacency matrix of a weighted graph is

aij ¼
ewij; if node i is adjacent to node j

0; otherwise

�
ð3Þ

which is attained by edge weights vector. In this study, the simple
graphs are examined, and thus diagonal terms are zero as there are
no loops.

2.2. Graph product rules for analysis of structures

In the graph theory, graph products is identified as binary oper-
ation on graphs focusing on regular and repetitive patterns and
their properties. Therefore, a structure is called regular whenever
the underlying model is a product of sub-graphs. The sub-graphs
producing a product graph are known as its generators. Many struc-
tures with regular patterns may be viewed as the Cartesian pro-
duct, strong Cartesian product or direct product of a number of
simple graphs.

Graph product rules for analysis of repetitive structures has
been presented in Ref. [36]. The first assumption belongs to the
commutative property of two Hermitian matrices Ai and Aj, which
is necessary and sufficient condition for simultaneously diagonal-
ization of these matrices using orthogonal matrix as follows

AiAj ¼ AjAi; i–j: ð4Þ
Now assume a matrix Z may be written as the sum of n Kronecker
products as given by

Z ¼
Xn
i¼1

Ai � Bi; ð5Þ

so that it can be transformed into a block diagonal matrix employ-
ing the mentioned condition. One can represent stiffness matrix of a
cyclic symmetric structure in cylindrical coordinate system that
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