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a b s t r a c t

An efficient, stable and accurate quadrilateral element and its improved stiffness matrix on the midpoint
quadrature concept is proposed in this research study. As a first approximation, the integrating point is
considered as midpoint of the element of the mapped 2-square in the (n, g) plane (same as one-point
Gauss-Quadrature). As a second approximation or stabilizing function, integrating points are assumed
to be either at the midpoint of the four quadrants or four element edges of the mapped 2-square element
in the (n, g) plane and these interpolated data are assembled. An appropriate weighted addition of the
two approximations is found to result in a better and stable stiffness matrix than equivalent time delayed
value of Gauss Quadrature.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

When attempting to calculate the element stiffness matrices by
FEM, a lot of effort is taken to determine as many simple represent-
ing sampling points as possible to diminish computational effort.
Enough attention is to be given to develop efficient and simple
numerical methods to solve the engineering problems in Finite ele-
ment methods. At the same time this should not result in destroy-
ing the order of accuracy of FEM. Basically, it is noted that low
order quadrature without stabilizing function, not only reduces
the accuracy but also result in loss of stability unless it is handled
with due diligence [1,2]. The various procedures are established
including closed form solution as well as reducing the time
required for numerical quadrature [3–8]. As long as geometric
function (C� continues) to remain linear the closed form solution
attempt is possible because Jacobian becomes matrix of constant.
Subramanian et al. [9–12] discussed such universal matrix concept
to evaluate closed form stiffness matrices for triangular and tetra-
hedron elements when Jacobian is a matrix of constant. The same
method and principle extended to the family of both transition ele-
ments and infinite domain elements [13].

In present paper, two approximations of the stiffness matrices
are calculated using the mid-point rule of two step sizes h and

0.5 h. It means the first approximation for stiffness matrix of the
quadrilateral elements is sampled at the centroid {(0, 0) point} of
the element and further in the second approximation for the step
size of 0.5 h, either at the midpoints of the four quadrants
((�1/2, �1/2), (1/2, �1/2), (1/2, 1/2), and (�1/2, 1/2)) or midpoint
of the four element boundary edges {(�1, 0), (0, �1), (0, 1), (1, 0)}
of the mapped 2-square element in the (n, g) plane. Then the two
approximations are extrapolated using Richardson extrapolation
procedure to get a better result [14]. In the Proposed method, a
similar mid-point rule is used to calculate the two approximations.
As the error associated with it becomes proportional to h2, the
well-known Richardson extrapolation is used to get the aforemen-
tioned two approximations with different step size and this proce-
dure gives the good convergence result [15,16]. Importantly,
Richardson extrapolation [17] is most frequently used either to
control the size of the error formed in the solution by the chosen
numerical method or to attempt to increase the accuracy of the
solution calculated by the original numerical methods.

Recent developments in modern improved material processing
techniques have made it possible for manufacturers to provide a
wide range of different better suited functionally graded materials
(FGM). Such materials can be selected to have continuously vary-
ing material properties to suit specific requirements. Della Croce
and Venini [18] discussed finite element formulation for such func-
tionally graded plates. Kubair and Bhanu-Chandar [19] and Enab
[20] addressed the problem of stress concentration factor due to
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a circular hole in functionally graded plate and they also discussed
finite element formulation for this particular FGM. Kim and Paulino
[21] discussed functionally graded finite elements for generalised
isoparametric formulation and gave a comparison for treating the
sub-element as homogeneous as well as graded element. Oliveira
et al. [22] discussed the weighted quadrature rule for finite ele-
ment method and proposed suitable weighting values for the alter-
nate sampling points that were obtained by the general technique
of solving polynomial approximation functions.

If the Gauss element is to be established for the FGM, usually, it
samples are taken at the selected standard Gauss points for the
material constant. So, in this stiffness matrix calculation more float
point variables are involved and they increase the computational
time proportionally. Therefore, the alternate proposed method in
this study is intended to overcome these difficulties and offer sim-
ple, effective, hourglass controlled and time saving efficient meth-
ods to also handle FGM. Unlike the conventional Gauss Quadrature
procedure, the proposed methods use only the integer values as
typical sampling points. Hence, the calculation of stiffness matrix
becomes very simple and effective without compromising the sta-
bility issues, while arriving at rate of convergence of the solution.
These basic properties of the proposed elements are verified using
some of the benchmark example problems and compared with
Gauss Quadrature values.

2. Isoparametric element stiffness matrix formulation for non-
homogenous materials (functionally graded materials-FGM)

Q
is defined as the strain energy (U) minus the potential energy

(W) of the loads
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where ðrxxryysxyÞT and ðexxeyyexyÞT are the in-plane stresses and
strains respectively. D is the material matrix which is a function
of Young’s Modulus (E) and Poisson’s ratio (l). The parameter c
describes either the plane stress ðif;c ¼ 0Þ or plane strain
ðif;c ¼ 1Þ [19]. When the material properties are assumed to be
constant, material matrix D is invariant with respect to the coordi-
nate position of the elements. But in functionally graded materials,
Young’s Modulus and the Poisson’s ratio are known as the function
of coordinate position of the elements (x and y) in the domain as
E ¼ Eðx; yÞ and l ¼ lðx; yÞ.

In the isoparametric formulation of quadrilateral elements
(Fig. 1), the field variable function (u and v), geometric functions
(x and y) and material functions (E and l) are described as given
below

u ¼
Xn
i¼1
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Xn
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where n is number of nodes in the element and, N is the interpola-
tion function of the elements.

The general Strain equation is,
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the strain displacement matrix [B] can be written for plane stress
and plain strain conditions as follows

B ¼ ðB1Þ3�4 � ðB2Þ4�4 � ðB3Þ4�2n

u v½ �T ¼ ½u1 v1 u2 v2 . . . un vn �T

where n represents number of nodes in the element
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Element stiffness matrix in the finite element method can be
written as

½Ke� ¼
Z 1

�1

Z 1

1
½Beðn;gÞ�T ½Deðn;gÞ�½Beðn;gÞ�det½Je�dndg ð8Þ

To approximate the integration of stiffness matrix in two dimension
as shown in Eq. (8), the appropriate numerical quadrature is used as
follows:

½Ke� ¼
XM
i¼1

XN
j¼1

WiWjK
eðni;gjÞdndg

where M and N denote the number of quadrature points in the n
and g directions and Wi and Wj represent the corresponding
weights of the quadrature.

Fig. 1. Quadrilateral element: real and transform plane.
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