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a b s t r a c t

Two simple homogenization models suitable for the non-linear analysis of masonry walls in-plane loaded
are presented. A rectangular running bond elementary cell is discretized by means of twenty-four
constant stress three-noded plane-stress triangular elements and linear two-noded interfaces.
Non-linearity is concentrated on mortar reduced to interface, exhibiting a holonomic behavior with
softening. The paper shows how the mechanical problem in the unit cell can be characterized by very
few displacement/stress variables and how homogenized stress-strain behavior can be evaluated by
means of a small-scale system of non-linear equations. At a structural level, it is therefore not necessary
to solve a homogenization problem at each load step in each Gauss point and a direct implementation
into commercial software as an external user supplied subroutine is straightforward. Non-linear struc-
tural analyses are conducted on a variety of different problems, for which experimental and numerical
data are available in the literature, in order to show that accurate results can be obtained with a limited
computational effort.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Masonry is a composite material constituted by bricks (or
blocks) joined by mortar. The variability of the masonry bond (or
arrangement of the bricks), the shape and dimension of the bricks,
as well as the quasi-fragile behavior of the constituent materials,
make the simulation of masonry still a challenging task. At present,
two main approaches are utilized to numerically describe masonry
behavior after the elastic limit, which usually is exceeded at low
levels of external loads, known in the technical literature as
macro-modeling and micro-modeling.

Macro-modeling does not make any distinction between
masonry units and joints, averaging the effect of mortar through
the formulation of a fictitious continuous material. The literature
in this regard is extensive [1–3], with the noticeable example of
no-tension material modeling (e.g. [1]), traditionally conceived to
deal with non-linear problems exhibiting predominant mode I
fracture of the joints (e.g. arches or pillars under rocking) and
masonry with good compressive strength, where crushing and
orthotropic behavior are not paramount. Macro-modeling allows
the rough discretizations necessary for the analysis of large scale

structures. Nevertheless, it is difficult to take into account some
distinctive aspects of masonry in this approach, such as anisotropy
in the inelastic range and the post-peak softening behavior in both
tension and compression, unless sophisticated approaches with
multiple inelastic parameters are adopted. In this regard, some
equivalent macro-models have been presented [2,3], featuring
orthotropic elastic–plastic behavior with softening. Theoretically,
such approaches are capable of adequately estimating the
non-linear masonry behavior along any load combination, even if
some limitations may occur in specific cases (see [4] for a detailed
discussion). Costly experimental campaigns are needed to
consistently evaluate data fitting mechanical coefficients that fully
define the models.

The alternative micro-modeling approach is simply character-
ized by distinct modeling of mortar joints and bricks at structural
level. The reduction of joints to interfaces [5–7] helps in limiting
variables, especially in the non-linear range, but the approach is
computationally demanding and the need of modeling separately
bricks and mortar limits its applicability to structural elements
and small case studies. Therefore, it can be stated that, at present,
the analysis of masonry walls in the inelastic range requires
macro-scale computations with finite elements (FEs) [8,9]. In such
scenario, homogenization [10–19] is a fair compromise
between micro- and macro-modeling, because it allows
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non-linear analyses of large scale structures, still considering the
real disposition of bricks and the actual mechanical properties of
the constituent materials at a cell level. Clearly, the numerical
models to use at structural level should be sufficiently simple,
reliable and efficient to allow a quick evaluation of (a) collapse
loads, (b) displacements near collapse and (c) post peak behavior
of the structures.

Homogenization (or related simplified approaches) consists in
extracting a representative element of volume (RVE) that generates
the whole structure by repetition, in solving a boundary value
problem on the RVE and in substituting the assemblage of bricks
and mortar at a structural level with a fictitious orthotropic
equivalent material. The most straightforward procedure is the uti-
lization of FEs [13,20], assuming either elasto-plastic or damaging
constitutive laws for units and mortar. Nevertheless, the so-called
FE2, i.e. a twofold discretization, the first for the unit cell and the
second at structural level, proved to be still too demanding, since
the field problem has to be solved numerically for each load step,
in each Gauss point. Alternatively, in this paper, a simplified
homogenization two-step model is used to analyze masonry walls
in-plane loaded. In the first step, masonry is substituted with a
macroscopic equivalent material through a so-called compatible
identification, belonging to the wide family of the homogenization
procedures. The unit cell is meshed by means of 24 triangular con-
stant stress (CST) plane stress elements (bricks) and linear inter-
faces for mortar joints. Triangular elements are assumed linear
elastic, whereas the mechanical response of the interface elements
includes two dominant failure modes, namely cracking (mode I)
and shear (mode II) or a combination of two (mixed mode). Such
elements are equipped with a constitutive relationship referred
to as ‘‘holonomic”, since expressed in terms of normal and tangen-
tial tractions r and s as a path independent function of the normal
and tangential relative displacements at the interface. Both a
piecewise linear and an exponential law are implemented, for-
mally identical to an improved version of the Xu-Needleman law
and proposed in another context [21–23]. Such cohesive relation-
ships are characterized by a post-peak softening branch, possibly
with coupling between normal and shear relationships in the case
of the improved Xu-Needleman model.

Two slightly different approaches are compared. The first
(Model I) translates the mechanical problem into mathematics by
means of a system of a few non-linear equations, which is solved
with standard general purpose algorithms. The second (Model II)
is a semi-analytical two variables procedure. While semi-
analytical homogenization is a method already known and used
in periodic fiber-reinforced composites, see e.g. [24], this is one
of the first applications for periodic masonry, that at the same time
allows a rigorous conservation of anti-periodicity of the stress field
and periodicity of displacements.

In the second step, entire masonry walls are analyzed in the
inelastic range by means of a commercial FE code where the dis-
cretization is constituted by quadrilateral rigid elements and
homogenized holonomic tensile-shear springs. It is worth men-
tioning that most commercial codes can be suitably used at this
aim. The procedure is efficient and reliable because: (1) the disad-
vantages of FE2 are superseded since the solution in terms of dis-
placements and stresses is found at a cell level with very limited
computational effort, using an implementation of the routine
adopted at a meso-level to evaluate homogenized quantities
directly at structural level; (2) it is not necessary to discretize with
refined meshes the elementary cell and hence Gauss point compu-
tations are much faster, where only few kinematic stress variables
are needed; and (3) the holonomic laws assumed for mortar joint
allow for a total displacement formulation of the model, where
the only variables entering into the homogenization problem are
represented by displacements.

2. The simplified (compatible homogenization) holonomic
model

One of the basic concepts of homogenization relies in introduc-
ing averaged quantities representing the macroscopic strain and
stress tensors (respectively E and R) [13,25] on a representative
element of volume Y (RVE or elementary cell, Fig. 1), i.e.
E ¼ hei ¼ 1

A

R
Y eðuÞdY and R ¼ hri ¼ 1

A

R
Y rdY , where A stands for

the area of the elementary cell, e and r stand for the local quanti-
ties (strains and stresses respectively) and h⁄i is the averaging
operator. Periodicity conditions are imposed on the stress field r
and the displacement field u, given by:

u ¼ Ey þ uper uper on @Y

rn anti-periodic on @Y

�
ð1Þ

where u is the total displacement field, uper stands for a periodic
displacement field, ~x ¼ fx y zg is the local frame of reference (see
Fig. 1), E is the homogenized strain tensor and n is the outward
versor of the oY surface.

In the model proposed, which is a simplified homogenization
hereby designated as ‘‘compatible identification” (as coined in
[26], where additional details can be found), joints are reduced to
interfaces with zero thickness and bricks are discretized by means
of a coarse mesh constituted by three noded plane-stress elements,
as schematically sketched in Fig. 1. The choice of meshing 1/4 of
the brick through at least 3 triangular elements is due to the need
of reproducing the presence of shear stress in the bed joint
(element 2 in Fig. 1) in horizontal stretching.

When dealing with the non-linear approach presented hereafter
[11], all the non-linearity in the RVE is concentrated on joints
reduced to interfaces. With the coarse discretization adopted, 1/4
of the RVE is meshed through 6 CST elements, labeled in Fig. 1 as
1, 2, 3, 10, 20, 30.

Indicating with �(n) a stress component belonging to the nth ele-
ment, the plane stress Cauchy stress tensor inside the nth CST ele-

ment r(n) is constituted by the components rðnÞ
xx (horizontal stress),

rðnÞ
yy (vertical stress) and s(n) (shear stress). When dealing with sta-

tic quantities, equilibrium inside each element is a priori satisfied,
divr = 0, whereas two equality constraints involving Cauchy stress
tensor components of triangles have to be imposed for each inter-
nal interface between adjoining elements. In particular, for 1–2
interface, it has to be ensured that the stress vector (normal and
tangential component) is equal passing from element 1 to element

2, i.e. rð2Þ
xx ¼ rð1Þ

xx þ qðsð1Þ � sð2ÞÞ and rð2Þ
yy ¼ rð1Þ

yy þ q�1ðsð1Þ � sð2ÞÞ,
where q is the ratio between the semi-length of the bricks and
its height, i.e. q = L/2H. Analogous equations can be written for
3–2, 30–20, 2–20 and 20–10 interfaces.

Assuming that the triangular elements are linear elastic, the fol-
lowing relationship between strains and stresses can be written:

exx
eyy
cxy

264
375 ¼

rxx
Eb

� mbryy

Eb

� mbrxx
Eb

þ ryy

Eb
s
Gb

2664
3775 ð2Þ

Here, Eb, mb and Gb are the brick elastic modulus, Poisson’s ration
and shear modulus, respectively.

3. Two simple homogenization models

In case of linear elastic bricks and mortar joints reduced to
interfaces with either linear or non-linear (total strain or holo-
nomic) behavior and within the FE discretization shown in Fig. 1,
two simple models are derived and hereafter briefly described.
Both compatible homogenization strategies are implemented in

14 E. Bertolesi et al. / Computers and Structures 176 (2016) 13–33



Download English Version:

https://daneshyari.com/en/article/4965853

Download Persian Version:

https://daneshyari.com/article/4965853

Daneshyari.com

https://daneshyari.com/en/article/4965853
https://daneshyari.com/article/4965853
https://daneshyari.com

