
An improved moving Kriging meshfree method for plate analysis using a
refined plate theory

Chien H. Thai a,b, Tan N. Nguyen a,b, T. Rabczuk a,c, H. Nguyen-Xuan d,e,⇑
aDivision of Computational Mechanics, Ton Duc Thang University, Viet Nam
b Faculty of Civil Engineering, Ton Duc Thang University, Viet Nam
c Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstrasse 15, 99423 Weimar, Germany
dDuy Tan University, Da Nang, Viet Nam
eDepartment of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 40402, Taiwan

a r t i c l e i n f o

Article history:
Received 20 June 2015
Accepted 20 July 2016

Keywords:
Moving Kriging interpolation
Meshfree method
Two-variable refined plate theory
Isogeometric analysis

a b s t r a c t

This paper proposes a simple and efficient approach based on a moving Kriging interpolation-based (MKI)
meshfree method and a two-variable refined plate theory for static, free vibration and buckling analyses
of isotropic plates. A generalized formulation through various higher-order distributed functions is pre-
sented. Shear correction factors are not required due to zero-shear stresses satisfied at the top and bot-
tom surfaces of plates. The governing partial differential equations are discretized by a weak Galerkin
form and numerically solved by using MKI basis functions. The present theory considers the transverse,
shear deflections and their derivations while only the deflections are included in approximate solutions.
A new correlation function is proposed to construct MKI shape functions so that the underlying solution
becomes stable. In addition, a rotation-free technique based on isogeometric analysis is presented to
enforce boundary conditions of normal slopes for clamped plate cases, which is simpler and more effi-
cient than several existing approaches. Numerical results show excellent performance of the present
method.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The plate structures have been received much interest of
researchers and various applications into construction, aerospace,
mechanical engineering and so on [1] are found. The governing
partial differential equations of the present plate theory are a
fourth-order and hence a weak form formulation is required the
C1-continuity in approximation fields. In the finite element method
(FEM), some C1-continuous plate elements have proposed [2–4].
However, the implementation of these elements into packages
exists some disadvantages related to the mesh geometry. As an
alternative approach, the meshless method can be recommended.
The meshless method can well capture the higher-order continuity
of the present plate theory. Krysl and Belytschko first employed the
element free Galerkin (EFG) method for the thin plate static analy-
sis [5]. The EFG was then extended to free vibration analysis [6].
The meshless local Petrov–Galerkin (MLPG) method was applied

to bending plate problems [7]. The meshfree particle method was
also used for analyzing of the thin plates by Oh et al. [8]. Various
researches such as the reproducing kernel particle method pro-
posed by Liu et al. [9], the Hermite-type technique embedded with
the reproducing kernel function [10] and the radial point interpo-
lation function (RPIM) [11,12] were also proposed for thin plate
analysis. Also, the RPIM incorporated with some smoothing tech-
niques to solve the thin plate problems beyond rotation degrees
of freedom was reported in [13]. Further developments of mesh-
free method for thin shell analyses are found in [14–16] and for
fluid–structure interaction problem [17]. In addition, an advanced
FE technique based on several versions of strain smoothing was
addressed for elasticity [18–22] and plate problems [23,24]. More-
over, isogeometric analysis proposed by Hughes et al. [25] opens a
new door for computational mechanics. An overview and com-
puter implementation aspects was recently addressed in [26].
Thanks to the isogeometric analysis, a unified approach for lami-
nated plate structures has been well established [27–29].

The classical plate theory (CPT) is suitable for the thin plate
based on Kirchoff-Love assumptions. However, when the plate
becomes moderate, the result is no longer accurate by the
significant influence of shear deformation. The first-order shear
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deformation theory (FSDT) was then investigated in [30,31]. The
FSDT is however required shear correction factors (SCFs) in order
to describe properly the shear stress across the plate thickness.
The findings of such SCFs depend on many factors: cross-section
area, material, etc. [32]. Various higher-order shear deformation
theories have been devised to model precisely the stress/strain
across the plate thickness. For instance, we can list some higher-
order shear deformation theories as the third-order shear deforma-
tion theory (TSDT) [33,34], the exponential shear deformation
theory (ESDT) [35], the inverse trigonometric shear deformation
theory (ITSDT) [36], the fifth-order shear deformation theory
(FiSDT) [37], the zigzag model theory [38] and the refined plate
theory (RPT) [39]. According to the RPT, the transverse displace-
ment is regarded as a contribution of bending wb and shear ws

components. Further developments of the RPT can be found in
Shimpi et al. [40,41] and Thai et al. [42,43]. Its main advantages
are less variable, applicable to thick and thin plate analyses [41].
However, the RPT requires the C1-continuity in an approximate
formulation which the standard finite element does not satisfy.
As a suitable method, the MKI function is used to construct the
plate formulation based on the RPT.

In attempts to developments of advanced methods, we consider
Kriging interpolation initially proposed to evaluate natural
resources by Krige [44] and then used to construct the shape func-
tions in meshfree methods. Themoving Kriging interpolation shape
function was firstly applied to the meshfree method by Gu [45].
Being different from several other meshfree methods, the MKI
meshfree method ensures kronecker-delta property of the shape
function. Hence, the essential boundary condition is imposed simi-
lar to FEM. Thus, theMKImeshfreemethod procedure is identical to
FEM without using boundary correction techniques as Lagrange
multipliers [46,47], penalty methods [48,49] and coupling with
FEM [50–52]. The MKI shape function is suitable for both the global
weak-form and the local weak-form. In the first approach, it was
applied to two-dimensional elasticity problems by Tongsuk and
Kanok-Nukulchai [53], Sayakoummane and Kanok-Nukulchai [54]
then extended the Kriging-based element-free Galerkin method
to the degenerated shell structures. Other applications of the mov-
ing Kriging interpolation-based meshfree method are of the thin
plates [55], the Reissner–Mindlin plates [56]. On the other hand,
the local weak-form moving Kriging meshfree method was devel-
oped for two-dimensional structural analysis by Lam et al. [57].
Its further developments can be found in [58–60].

In this paper, we present a global moving Kriging interpolation-
based meshfree method for static, free vibration and buckling anal-
yses of isotropic plates. Generally, the results from the global MKI
meshfree method depend strongly on the quality of the moving
Kriging interpolation that is affected by a correlation parameter
in correlation function. We therefore propose a correlation func-
tion in which the correlation parameter does not influence on
the quality of MKI shape function. The present method is proved
to be stable for numerical calculations. Several benchmark prob-
lems are given to show high efficiency of the proposed method.

The outline of the paper is organized as follows. In Section 2, a
brief on moving Kriging interpolation-based meshfree method is
introduced. In Section 3, a rotation-free moving Kriging interpola-
tion formulation for refined plate model is presented. Section 4
shows a simple technique to impose essential boundary condi-
tions. Numerical results are provided in Section 5. Section 6 sum-
marizes some concluding remarks.

2. On an improved MKI Meshfree method

Let X be the domain in R2 with the boundary C as shown in
Fig. 1. Let the nodes be defined by xI (I = 1, 2,. . . , N), in which N is

the quantity of the nodes in the domain X and on the boundary
C. Consider a support domain Xx 2 X, the neighborhood of an
interested point x located in X. In order to approximate u-
distributed function in Xx that includes a number of nodes xJ
(J = 1, 2, . . . , n), where n is the quantity of nodes in the support
domain Xx.

The moving Kriging interpolation uhðxÞ, 8x 2 Xx can be
expressed by

uhðxÞ ¼ ½pTðxÞAþ rTðxÞB�uðxÞ ð1Þ
The Eq. (1) can be rewritten in a compact form by

uhðxÞ ¼
Xn
I¼1

/IðxÞuI ð2Þ

The moving Kriging interpolation shape function /IðxÞ is
expressed as follows

/IðxÞ ¼
Xm
j¼1

pjðxÞAjI þ
Xn
k¼1

rkðxÞBkI ð3Þ

in which the matrices A and B depend on the coordinate of nodes
within the support domain Xx as

A ¼ ðPTR�1PÞ�1
PTR�1 and B ¼ R�1ðI� PAÞ ð4Þ

where vector pðxÞ is a polynomial basis of order m and I is a unit
matrix of a size n� n.

For example, the basis functions for a two-dimensional problem
can be expressed by a linear and quadratic form, respectively, as

pTðxÞ ¼ f1 x y g; ðm ¼ 3Þ and
pTðxÞ ¼ f1 x y x2 xy y2 g; ðm ¼ 6Þ ð5Þ

In Eq. (4), P is the matrix of size n�m, which contains the val-
ues of all polynomial basis functions at n nodes in Xx, as expressed
in Eq. (6).

P ¼
p1ðx1Þ . . . pmðx1Þ
. . . . . . . . .

p1ðxnÞ . . . pmðxnÞ

264
375 ð6Þ

and the term rðxÞ in Eq. (1) is defined as follows

rðxÞ ¼ Rðx1;xÞ Rðx2;xÞ . . . Rðxn;xÞf gT ð7Þ
in which RðxI;xJÞ represents the correlation function defined by

RðxI; xJÞ ¼ 1
2
E uhðxIÞ � uhðxJÞ

� �2h i
ð8Þ

where E denotes an expected value of a random function.
The matrix R is written as in the following form

R ¼
Rðx1;x1Þ . . . Rðx1; xnÞ

. . . . . . . . .

Rðxn; x1Þ . . . Rðxn;xnÞ

264
375 ð9Þ

Fig. 1. Domain representation and support domain of 2D model.
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