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a b s t r a c t

Dynamic compliance (structural and topology) optimization is a topic of active and fertile research car-
ried on by several research groups aiming to extend to the dynamic regime by now well-consolidated
approaches for static compliance optimization. Available approaches on this purpose are first divided into
time-domain and frequency-domain strategies and then a comparison between the two is performed
with respect to actual significance and CPU time of relevant optimal designs. For this paper sake reference
is made to the optimal design of viscoelastic thin beams but the approach may be shown to apply with no
modifications to other and possibly more complex systems such as 2D and 3D dynamic-compliance
topology optimization. By extensive numerical investigations, it is shown that the frequency-domain
approach to be preferred over time-domain schemes even though relevant computations happen to be
heavier, mainly as far as the computation of the H1-norm of the system transfer function is concerned.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The (size, shape and topology) optimization of structures in
dynamic regime dates back some thirty years ago at least and
has been addressed using typically frequency or time domain
approaches. With no aim of completeness, a brief summary of
the main contributions relevant to the present paper are summa-
rized next whereas reference is made e.g. to [1] and references
therein for a comprehensive review concerning the optimization
of structures subjected to transient loads.

As to frequency domain approaches, in the pioneering paper [2],
a frequency domain approach for the topology optimization of
structures is derived that is based on the minimization of the
dynamic compliance, a concept that to the best knowledge of this
author was therein introduced. Under the (strong) hypothesis of a
time-varying sinusoidal load (i.e. characterized by a single fre-
quency) either the compliance, i.e. the dot product between the
loads and the dual displacements, or its integral average over a
finite frequency interval are minimized. Optimal topologies are
then found that depend on the specific frequency of the acting
load. Kikuchi and coworkers developed their analysis further in
[3] where optimal topologies are found that minimize either the
dynamic compliance caused by a sinusoidal load or the so called
mean-eigenvalue, i.e. a weighted average of specific eigenfrequen-
cies. More recently [4] extends the approach to handle the case of
harmonic excitations characterized by multiple frequencies by
minimizing the integral of the displacement amplitude in a given

frequency interval. To that goal, a non uniform partition of the fre-
quency axis is introduced that is generally coarse but finer and
finer in the vicinity of the poles of the system. A similar approach
is proposed in [5] that is further coupled to a model-order reduc-
tion approach aiming to lessen the computational burden. Along
a similar path optimal topologies that minimize the dynamic com-
pliance due to a thermal action are found in [6] whereas Liu et al.
[7] faces the subtle issue of minimizing the dynamic compliance in
the presence of rotating harmonic loads characterized by a single
frequency. Under the same hypothesis on the acting loads, Xu
et al. [8] introduces a concurrent design strategy for the optimal
design of composite macrostructure and multi-phase material
microstructure for minimum dynamic compliance. A strategy for
topology optimization of magnetorheological fluid layers in sand-
wich plates for semi-active vibration control is proposed in [9],
where either a single-frequency harmonic load is considered or,
to account for the possible variability of the frequency content of
the excitation, an objective function is introduced that is the max-
imum of all possible dynamic compliances computed for each sin-
gle harmonic load. To summarize with, frequency domain
approaches for minimizing the dynamic compliance are being
investigated and applied to a wide variety of problems of engineer-
ing interest but are mostly limited to the case of single-frequency
harmonic loads which should be considered a severe limitation:
even though the loads acting on real life structures may be band-
limited one may hardly think that a single frequency harmonic
load might be representative of the actual conditions wherein
the designed specimen is expected to operate.
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As for time domain approaches, nearly all the existing methods
define the dynamic compliance to be minimized as a positive def-
inite function that is integrated in the time domain over a finite
time horizon. A semi-analytical sensitivity computation is then
derived that is based on the adjoint approach as described in [1].
A 1D wave propagation problem is analyzed and solved in [10] that
is based on this very same approach, whereas a 3D approach for a
similar problem is proposed in [11] wherein the objective is the
material microstructure optimization for linear elastodynamics
wave management. From a methodological point of view, the
fundamental paper [12] is worth mentioning that enters the subtle
issue of the consistency of adjoint-based approaches in the two
versions of differentiate-then-discretize and discretize-
then-differentiate. Methodological questions are likewise addressed
in [13] where the importance of the selected time-marching
scheme is enhanced and in [14] where stress constraints are intro-
duced and an ad-hoc approach for their treatment introduced. The
crucial issue of coupling this kind of approaches with model-order
reduction strategies is faced in [15] using different goal functions
that share the fact of being time-domain averaged integrals but
differ as to the specific engineering goal to be minimized that
can be the dynamic compliance, the mean strain energy or the
mean squared displacement of a target degree-of-freedom.

The remainder of the paper is organized as follows. Section 2
presents a time-domain framework and its dual frequency-
domain counterpart for the analysis of dynamical systems depen-
dent on a vector of design parameters. The framework is abstract
enough to warrant applicability to a wide range of systems includ-
ing 2D and 3D topology optimization problems even though the
focus of this paper shall be on viscoelastic beams discretized via
a truly-mixed finite-element scheme. Sections 2.2 and 2.3 develop
the two dynamic-compliance minimization problems framed in
the frequency domain and in the time domain, respectively. A
fundamental issue that is worth mentioning is that the
frequency-domain approach, based on the transfer-function
H1-norm concept, has the merit of exploiting a general frequency
content of the incoming excitation with a single-shot strategy, a
feature that is neither shared by the proposed time-domain
approach nor by any of the existing methods referred to previously.
Section 3 presents the results of a few numerical investigations
where the results got by using the two approaches are presented
and compared whereas Section 4 presents conclusive remarks
and need for ongoing and future developments. For completeness
sake, equations governing the viscoelastic beam model
investigated herein are presented in Appendix A (for an in depth
derivation, see [16]).

2. A unified framework for time and frequency domain
dynamic compliance optimization

Aim of this section is to derive an abstract framework for
time-domain and frequency-domain dynamic compliance
optimization. To this goal the system dynamic governing
relations are presented first followed by two formulations for
dynamic compliance optimization in time and frequency domain,
respectively. At this stage, the setting is abstract and no reference
is made to any specific structural system and in fact the proposed
approach applies to a wide range of dynamical systems, including
2D and 3D dynamic compliance topology optimization. Given this
general scenario, for this paper sake the formulations shall be
specified and applied to viscoelastic beams discretized by
truly-mixed finite elements that have the merit of allowing an
in-depth evaluation of the proposed approach keeping the
computations simple enough and leaving the focus on the method-
ology itself.

2.1. System dynamics governing relations

In view of the developments concerning the optimization for-
mulations to be proposed next, dynamical systems investigated
herein are given either the descriptor state-space (DSS) formulation

E _x ¼ Axþ Bw
z ¼ Cx;

�
ð1Þ

or its Laplace-domain transfer-function counterpart (DTF)

Z ¼ GðsÞW; where : GðsÞ ¼ CðsE � AÞ�1B; ð2Þ
where x and z are the state and output vectors, respectively, A is the
structural state matrix and Z the Laplace transforms of z. Within the
usual framework [17], w, B and C use to be the load vector, the
(Boolean) matrix distributing the loads to the degrees-of-freedom
and the (Boolean) matrix that determines the entries of the output
vector z through a linear combination of the state vector compo-
nents x, respectively. A few modifications are needed in order for
the output z to coincide with (a new definition of) the dynamic
compliance C. First of all C ceases to be a Boolean matrix but incor-
porates the load themselves, i.e.

C ¼ ½F1 � � � Fi � � ��; ð3Þ
where Fi is the load acting on the i-th component of the state vector
x. The compliance C then reads

C � z ¼ Cx ¼ ½F1 � � � Fi � � ��
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where ui is the displacement of the i-th degree-of-freedom that is
forced by Fi. Likewise for B andw. First of all one should notice that,
even though the abstract framework of Eqs. (1) and (2) is inherently
Multi-Input/Multi-Output (MIMO), see e.g. [18] for MIMO optimal
design of dynamic structures, dynamic compliance optimization
may be inherently framed as a Single-Input/Single-Output (SISO)
problem since all the incoming disturbances belong to the same load
case and concur to the determination of the single output, i.e. the
compliance C. To accommodate this issue one sets w ¼ 1 and

B ¼
..
.

Fk

..

.

2
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3
7775; ð5Þ

where Fk is the forcing term of the k-th dynamic equation of motion
in (1)1.

2.2. The frequency-domain H1-norm based optimization framework

The design parameters, that may be the element densities of
topology optimization or the element beam depths in the case of
size and/or shape optimization, are grouped in a vector, say p, on
which the structural matrices E and A depend. Eq. (2) is then
rewritten making such dependent explicit, i.e.

Z ¼ Gðs;pÞW; where : Gðs;pÞ ¼ CðsEðpÞ � AðpÞÞ�1B: ð6Þ
The abstract frequency-domain dynamic compliance problem

therefore reads

min
p

kCðpÞk1 ¼ kGðix;pÞk1
s:t: Gðix;pÞ ¼ CðixEðpÞ � AðpÞÞ�1B

VðpÞ 6 Vmax

pmin 6 p 6 pmax
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