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a b s t r a c t

We have previously proposed a numerical node-based parameter-free shape optimization method for
designing the optimal free-form surface of shell structures. In this paper, this method is extended to deal
with two vibration problems including a vibration eigenvalue maximization problem and a frequency
response minimization problem. To avoid the repeated eigenvalue problem when a specified vibration
eigenvalue is maximized, we provide two optional approaches, i.e., tracking the specified natural mode
or increasing all the repeated eigenvalues. Each vibration problem is formulated as a distributed-
parameter shape optimization problem, and the derived shape gradient function is applied to the H1

gradient method for the shells proposed by the authors, where the shape gradient function is used as
a distributed force function to vary the surface. With this method, the optimal and smooth free-form
shape including a natural bead pattern can be obtained. Several calculated examples are presented to
demonstrate the effectiveness of the proposed method for the free-form design of shell structures
involving vibration problems.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Shell structures are commonly found in nature and in artefacts.
Eggs, seashells and insect shells are typical examples in nature, and
plastic bottles, automobiles, aircraft, and civil and architectural
structures are typical ones of artefacts. Owing to their characteris-
tics of thinness and lightness, shell structures are apt to become
the sources of noise and vibration, which not only cause discomfort
to users, but also give rise to strength problems such as fatigue life
issues. Various techniques have been implemented over the years
to isolate vibration sources and transfer paths, to reduce vibration
levels and to control vibration modes. In order to solve this
dynamic problem in the design of artificial shell structures, it is
important to optimize their shapes or curvature distributions,
while satisfying various mechanical characteristics. From the
standpoint of environmental problems, it is also necessary to make
structures lighter in weight. Numerical shape optimization tech-
niques offer a unique way to resolve these problems and meet
strict requirements simultaneously.

In focusing on the shape optimization of shell structures, most
of the proposed numerical shape optimization methods for design-

ing the shape of shell structures are classified as parametric meth-
ods [1–5], in which a shell is parameterized by using parametric
surfaces or design elements in advance. These methods are effec-
tive for reducing the number of design variables and seldom cause
a jagged boundary problem [6]. However, designers need consider-
able knowledge of and experience with shape parameterization,
especially because the shape obtained is strongly influenced by
parameterization. On the other hand, we have developed a free-
form optimization method for obtaining the optimal natural shell
form [7,8]. The method consists of main three parts; (1) theoretical
derivation of the shape gradient function based on the adjoint vari-
able method, (2) numerical computation of the shape gradient
function, and (3) determination of the optimal shape variation
based on the H1 gradient method for shells stated before. The
method is a non-parametric technique that can determine the opti-
mal smooth and natural free-form shape without causing jagged
shell structures. Bletzinger et al. also proposed a parameter-free
method for the free-form design of shells, using a filtering tech-
nique to maintain smoothness [9,10]. Our proposed method was
previously applied to a stiffness design problem [7] and shape
identification problem of shell structures [8]. The purpose of this
paper was to develop the parameter-free shape optimization
method to deal with the dynamic problems of shell structures as
mentioned above.
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Structural dynamic optimization was considered as an efficient
way to reduce the vibration, and a number of studies have been
carried out to solve dynamic design problems in the past decades.
This studies mainly focus on two topics of structural dynamic opti-
mization. One research topic is about the vibration eigenvalue
maximization problem [11–13]. Vibration eigenvalues usually rep-
resent the dynamic characteristics of structures, especially the
lower order natural frequencies are considered as an evaluation
measure of the dynamic response. The dynamic response of struc-
tures can be substantially reduced by increasing their lower order
vibration eigenvalues [11,14]. Another research topic is frequency
response minimization problem [15,16]. It reduces the frequency
response at a part of interest of the structure or over the whole
structure, so the resonance under the excitation force is suppressed
and then the local or global dynamic performance of structure is
improved [17]. Unfortunately, almost all of the above mentioned
studies address optimization of 2D, 3D continua, and there are
few studies contribute to the dynamic optimization of shell
structures.

This paper describes a solution to both the vibration eigenvalue
maximization problem and the frequency response minimization
problem of shell structures based on the free-form optimization
method for shells. A specified objective function is minimized
under volume and state equation constraints. Especially, the
repeated eigenvalue problem in the vibration eigenvalue maxi-
mization problem is avoided by two approaches. One is the track-
ing approach, where the natural vibration mode is tracked by using
the MAC (Modal Assurance Criterion) value. Another approach is to
change the objective and constraint functions for increasing all the
eigenvalues with respect to the eigenvectors in the repeated eigen-
value. Both problems are formulated as a distributed-parameter
shape optimization problem. The sensitivity function, called a
shape gradient function, and the optimality conditions in each
problem are theoretically derived using the material derivative
method and the adjoint variable method for each approach. The
optimal free-form shape is determined by applying the shape gra-
dient function to the H1 gradient method. In the following sections,
the governing equation of the shell structure, the formulation of
the problem, the free-form optimization method and the calcu-
lated examples will be described.

2. Governing equation of shell structure assembled by
infinitesimal flats

As shown in Fig. 1(a) and Eqs. (1)–(3), consider a thin-walled or
a shell structure having an initial bounded domain X � R3 (bound-
ary of @X), mid-area A (boundary of @A), side surface S and plate
thickness h. It is assumed for simplicity that stress and strain of
the shell structure are expressed by superposing the membrane
and bending components and by neglecting their coupling effect.
The Mindlin-Reissner plate theory is applied concerning plate
bending.

X ¼ fðx1; x2; x3Þ 2 R3jðx1; x2Þ 2 A � R2; x3 2 ð�h=2;h=2Þg; ð1Þ
X ¼ A� ð�h=2; h=2Þ; ð2Þ
S ¼ @A� ð�h=2; h=2Þ: ð3Þ

In addition, it is assumed that the mapping of the local coordi-
nate system ðx1; x2;0Þ which gives the position of the mid-area of
the plate, to the global coordinate system ðX1;X2;X3Þ, i.e.,
U : ðx1; x2;0Þ 2 R3 # ðX1;X2;X3Þ 2 R3, is piecewise smooth. Planar
triangular shell elements are used to discretize shell structures in
this work. Using the sign convention in Fig. 1(c), the displacement
expressed by the local coordinates u ¼ fuigi¼1;2;3 is considered by
dividing it into the displacement in the in-plane direction

fuaga¼1;2 and the displacement in the out-of-plane direction u3.
Considering a plane stress condition as shown in Eq. (4), the dis-
placement ua and u3 can be expressed as Eqs. (5) and (6), respec-
tively, by using the Mindlin-Reissner plate theory [18].

r33 ¼ 0; ð4Þ
uaðx1; x2; x3Þ � u0aðx1; x2Þ � x3haðx1; x2Þ; ð5Þ
u3ðx1; x2; x3Þ � wðx1; x2Þ; ð6Þ
where fu0aga¼1;2;w and fhaga¼1;2 indicate the in-plane displacement,
out-of-plane displacement and rotational angle of the mid-area of
the plate, respectively. For easier reference, main symbols and vari-
ables in this paper are also described in Table 1.

Then, substituting Eqs. (4)–(6) into the variational equation of
motion (i.e., weak form) of the three-dimensional linear elastic
theory, eliminating e33, the weak form of natural vibration equa-
tion relative to ðu0ðrÞ;wðrÞ; hðrÞÞ 2 U can be expressed as Eq. (7),
and the steady-state forced vibration relative to ðu0;w; hÞ 2 U can
be expressed as Eq. (8).

aððu0ðrÞ;wðrÞ; hðrÞÞ; ð�u0; �w; �hÞÞ ¼ kðrÞbððu0ðrÞ;wðrÞ; hðrÞÞ; ð�u0; �w; �hÞÞ;
ðu0ðrÞ;wðrÞ; hðrÞÞ 2 U; 8ð�u0; �w; �hÞ 2 U;

ð7Þ

aððu0;w; hÞ; ð�u0; �w; �hÞÞ �x2bððu0;w; hÞ; ð�u0; �w; �hÞÞ
¼ lð�u0; �w; �hÞ; ðu0;w; hÞ 2 U; 8ð�u0; �w; �hÞ 2 U; ð8Þ

where �ð�Þ expresses a variation. kðrÞ in Eq. (7) indicates the eigen-
value of the rth natural mode and x in Eq. (8) indicates the excita-
tion frequency. In addition, the bilinear forms að�; �Þ; bð�; �Þ and the
linear form lð�Þ are defined respectively in Eqs. (9)–(11).

aððu0;w; hÞ; ð�u0; �w; �hÞÞ ¼
Z
X
fCabcdðu0a;b � x3ha;bÞð�u0c;d � x3�hc;dÞ

þ CS
abca�cbgdX; ð9Þ

bððu0;w; hÞ; ð�u0; �w; �hÞÞ ¼ q
Z
X
fw�wþ ðu0a � x3haÞð�u0a � x3�haÞgdX;

ð10Þ

lðu0; �w; hÞ ¼
Z
A
ðf a�u0a �ma�ha þ q�wÞdA

þ
Z
@Ag

ðNa�u0ads�Ma�ha þ Q �wÞds; ð11Þ

where fCabcdga;b;c;d¼1;2 and fCS
abga;b¼1;2

denote an elastic tensor

including bending and membrane components, and an elastic ten-
sor with respect to the shearing component, respectively. In addi-
tion, fca � w;a � haga¼1;2 expresses the transverse shear strain
tensors and the constants q indicates material density.

Moreover, f ¼ ff aga¼1;2;m ¼ fmaga¼1;2 and q denote an in-plane
load, an out-of-plane moment and an out-of-plane load per unit
area applied on A, respectively. N ¼ fNaga¼1;2;M ¼ fMaga¼1;2 and
Q indicate an in-plane load, a bending moment and a shearing
force per unit length applied on @A, respectively. In addition, the
tensor subscript notation in this paper uses Einstein’s summation
convention and a partial differential notation for the spatial coordi-
nates ð�Þ;i ¼ @ð�Þ=@xi. It will be noted that U in Eqs. (7) and (8) are
given by the following equation.

U ¼ fðu01;u02;w; h1; h2Þ 2 ðH1ðAÞÞ5jsatisfy the given Dirichlet
condition on each subboundaryg; ð12Þ

where H1 is the Sobolev space of order 1.
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