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a b s t r a c t

A total Lagrangian finite element formulation for the analysis of large deformation of beams and frames,
based on the strain-gradient elasticity theory and the Timoshenko beam model, is developed herein. A
generalized version of the Kirchhoff-Saint Venant constitutive equation is proposed to capture geometric
nonlinearities at small scales. Also, field variables are interpolated using C1 shape functions for construct-
ing conforming elements. Accordingly, a novel 6-DOF two-node beam element is introduced. To analyze
frames, the formulation is extended so that a 9-DOF two-node frame element is produced. Several
examples are studied to show the accuracy of proposed elements.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The stiffness of the solids and structures predicted by the clas-
sical continuum mechanics is smaller than empirical results at
small scales such that it may be said that the size of specimens
plays a major role in the response of bodies [1]. In other words,
at small scales, the displacement field predicted by the classical
continuum theory has larger components than the experimental
data for the same level of loading. Therefore, some gradient theo-
ries were developed to overcome the disadvantages of the classical
one.

The strain-gradient elasticity theory is a special case of the the-
ory of elasticity with microstructure developed by Mindlin [2].
Despite the classical elasticity, the potential energy density in this
theory depends not only on the strain tensors, but also the gradient
of kinematic tensors. By assuming infinitesimal deformations,
three separate types for the theory have been developed by
Mindlin [2] and Mindlin and Eshel [3]. It is worth noting that the
strain-gradient theory of Mindlin [2] is the linearized version of
the nonlinear couple-stress theory elaborated by Toupin [4]. In
all forms of the strain-gradient theory which is defined in the
linear isotropic regime, there are some non-classical material
parameters in the potential energy density function. Generally,
finding these unknowns is a challenging problem. Aifantis [5] pro-
posed the simplest form of the strain-gradient theory, widely used
in the literature [6–12], that includes only one non-classical con-
stant, which is the so-called material length scale parameter.

Susmel et al. [13] compared the strain-gradient theory which is
based on the model of Aifantis [5] with the theory of critical dis-
tances and derived a relation between the length scale parameter
l in the strain-gradient theory and the critical distance value in the-
ory of critical distances. Moreover, Bagni et al. [14] presented the
material length scale parameter l in the strain-gradient elasticity
for a quantity of materials.

In the field of moderately large deflections, Lazopoulos et al.
[15] analyzed nonlinear bending and buckling of beams. Addition-
ally, Lazopoulos and Lazopoulos [16] formulated the nonlinear
elastic deformation of shallow shells. Ramezani [17] replaced the
infinitesimal strains with the von-Karman strains in strain energy
density function to take geometric nonlinearity of beams into
account based on the Timoshenko model.

In the most above-mentioned studies, analytical methods have
been used to solve differential equations of gradient elastic struc-
tures. Generally, analytical techniques often work on simple
geometries and boundary conditions. Furthermore, due to appear-
ance of the higher-order derivatives of field variables, dealing with
the differential equations in the strain-gradient theory is much
more complex than in classical mechanics. Consequently, a reliable
numerical method is necessary to solve different problems. In
addition, various branches of finite element method have been
used in the past decades to solve linear problems in the gradient
elasticity [18–24].

There are some practical applications in which beams experi-
ence large rotations and displacements, whereas strains are
small. Hence, the analysis of finite deformation of beams is of
great importance. In addition, a review of the literature shows
that arbitrary large deformation analysis of beams and frames
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in strain-gradient media is still an open problem. Therefore, this
research is devoted to geometrically nonlinear elastic deforma-
tion analysis of these structures under various geometries and
loadings. Moreover, due to complexity of the governing equa-
tions, the finite element method is used to solve the highly non-
linear equilibrium static equations. Additionally, by producing
strain-gradient-based finite elements for solids and structures,
it is expected that the strain-gradient theory attracts practical
applications.

The remainder of this research is arranged as follows. In the
Section 2, some brief information on the strain-gradient theory at
finite strains is presented. Also, kinematics of a Timoshenko beam
is described and various quantities are calculated in the Section 3.
Variational formulation of the problem is presented in the Sec-
tion 4, where the weak form of the equations of equilibrium is
derived. In the Section 5, the gradient-based finite element formu-
lation is presented. A two-node beam element, with six degrees of
freedom per node, is developed. Then, the beam element is gener-
alized to beams with an arbitrary orientation in the plane leading
to a frame element with nine degrees of freedom per node. In
the Section 6, several numerical examples are analyzed to examine
the accuracy and performance of the beam and frame elements
introduced here. Finally, some conclusions are drawn from the pre-
sent study in the Section 7.

2. The strain-gradient theory at finite deformation

In this section, a brief introduction to the generalization of the
strain-gradient theory to finite, elastic deformations are presented.
For more details on the subject, the pioneering works of Mindlin
[2], Mindlin and Eshel [3], and Toupin [4] are suggested.

It is feasible to generalize the original, linear strain-gradient
theory of Mindlin [2,3] to the large deformation. To this end,
energy-density in the Form-II is rewritten by means of
Green-Lagrange strain tensor E and its gradient N ¼ rE as follows
[25–27]:

UðE;NÞ ¼ 1
2
kEiiEjj þ lEijEij þ a1NiikNkjj þ a2NijjNikk þ a3NiikNjjk

þ a4NijkNijk þ a5NijkNkji ð1Þ
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where aI ðI ¼ 1� 5Þ are five non-classical material parameters and
k and l are the Lamé’s constants. It is clear that the Lamé’s
constants may be expressed in terms of the Young’s modulus E
and the Poisson’s ratio v by the relations k ¼ Ev=½ð1� 2vÞð1þ vÞ�
and l ¼ E=2ð1þ vÞ. In addition, u is the displacement vector for
the body and ui (i = 1–3) are its components in the rectangular
coordinate system.

The constitutive equations by considering Eq. (1) are then given
by

Sij ¼ Sji ¼ @U
@Eij

¼ kEkkdij þ 2lEij ð4Þ

Tijk ¼ Tikj ¼ @U
@Nijk

¼ 1
2
a1ðdijNkpp þ 2dkjNppi þ dikNjppÞ þ 2a2djkNipp þ a3ðdijNppk

þ dikNppjÞ þ 2a4Nijk þ a5ðNjki þ NkjiÞ ð5Þ
where dij is the Kronecker delta and Sij, and Tijk are the components
of the second Piola-Kirchhoff stress tensor S and the second Piola-
Kirchhoff double-stress tensor T, respectively. It is worthy of note
that Eqs. (4) and (5) are the generalization of the classical
Kirchhoff-Saint Venant constitutive equation.

3. Kinematics and kinetics of the strain-gradient Timoshenko
beam model

In this section, kinematic assumptions on the motion of a
particle deeming the Timoshenko beam model are first described.
Afterwards, the components of the strain tensor E and the strain-
gradient tensor N are obtained, which can be used to calculate
the components of the second Piola-Kirchhoff stresses, i.e. Sij and
Tijk.

3.1. Beam geometry and kinematic assumptions

A prismatic beam which has uniform cross section along the X1

direction is considered. Let L, h, and b be the length, height and
width of the beam in the undeformed configuration, respectively.
A rectangular Cartesian coordinate system {X1, X2, X3}, with {E1,
E2, E3} as its orthonormal basis vectors, is deemed. The coordinate
X1 is along the length and X2 is along the height of the beam,
respectively. Moreover, X3-axis is perpendicular to the X1X2-plane
so that a right-handed orthogonal rectangular coordinate system
is made. The beam cross section and external loading on the beam
are further assumed to be symmetric with respect to the X2-axis to
avoid any torsional effects.

The position vector of a material point in the reference and cur-
rent configurations are described by X = XiEi and x, respectively
and the relation x = u(X,t) holds. In the Timoshenko beam model,
it is assumed that plane cross sections, which are normal to the line
of centroid in the undeformed configuration, remain plane, but not
normal to the deformed, central line during deformation. Accord-
ingly, the motion is described by

uðX1;X2; tÞ ¼ x0ðX1; tÞ þ X2tðX1; tÞ ð6Þ
where x0 and t are the position vector of a material point on the
deformed line of centroid and the director vector, respectively.
These vectors are given by

x0ðX1; tÞ ¼ ½X1 þ uðX1; tÞ�E1 þwðX1; tÞE2

tðX1; tÞ ¼ � sinwðX1; tÞE1 þ coswðX1; tÞE2

�
ð7Þ

In Eq. (7), the functions u and w denote the displacement com-
ponents of a material point located on the line of centroid along the
X1 and X2 directions, respectively. Additionally, the function w
stands for the rotation angle of the beam cross section about the
X3-axis. Furthermore, the unit vector n perpendicular to the direc-
tor vector as well as the deformed cross section of the beam is
given by

nðX1; tÞ ¼ coswðX1; tÞE1 þ sinwðX1; tÞE2 ð8Þ
Also, Fig. 1 includes the coordinate system and the kinematic

quantities described above.
Notice that by substituting Eq. (7) into Eq. (6), the components

of the displacement vector u = x � X may be expressed as
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