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a b s t r a c t

This paper proposes a method for finite element (FE) model updating of civil structures. The method is a
hybrid global optimization algorithm combining simulated annealing (SA) with the unscented Kalman fil-
ter (UKF). The objective function in the optimization problem can be defined in the modal, time, or fre-
quency domains. The algorithm improves the accuracy, convergence rate, and computational cost of the
SA algorithm by local improvements of the accepted candidates though the UKF. The proposed method-
ology is validated using a mathematical function and numerically simulated response data from linear
and nonlinear FE models of realistic three-dimensional structures.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Finite element model updating (FEMU) can be defined as the
process of tuning a finite element (FE) model to minimize the dis-
crepancy between the measured and FE predicted responses of the
structure being modeled [18]. The tuning process is usually con-
ducted in an off-line fashion by using batch processing methods
and consists of seeking inaccurate or unknown parameters of the
FE model assuming that the model structure is fixed.

FEMU has attracted significant attention from the structural
engineering community because of its applications in structural
dynamics, mainly in damage identification (DID) and response pre-
diction (e.g., [19,47,25,42,15,43]). One of the most popular
approaches for DID makes use of a linear FE model which is cali-
brated using low amplitude vibration data recorded before and
after the structure has suffered damage. Then, damage is identified
as the reduction of effective stiffness in one or more regions of the
structure. Also, approaches for DID based on nonlinear model
updating have been proposed (e.g., [13,44,51]), however, all these
studies have used simplified nonlinear models with lumped non-
linearities defined phenomenologically. Only in recent years

high-fidelity mechanics-based structural nonlinear FE models,
which are used for analysis and design, have been employed for
DID (e.g., [3,14]). The use of advanced nonlinear structural FE mod-
els allows to describe the presence, location, type, and extent of
damage in the structure, because these models provide valuable
information about history of plastic deformations, residual defor-
mations, loss of strength, and loss of ductility capacity.

Methods for constrained nonlinear optimization are typically
used to solve the inverse problem of FEMU considering an objec-
tive function describing the discrepancies between the FE pre-
dicted and measured responses or quantities derived therefrom
(e.g., modal parameters or frequency response functions). Because
of the complexity of the relationship between the model parame-
ters to be identified and the objective function, the latter can
include many local minima. Gradient-based methods are com-
monly used for FEMU (e.g., [48,6,37]), however they might be
trapped in local minima and their solution highly depends on the
starting point (i.e., initial guess of the model parameters). In order
to avoid this issue, different global optimization algorithms (GOAs)
have been used for FEMU. Teughels et al. [49] and Bakir et al. [7]
investigated the use of coupled local minimizers (CLM) for linear
FEMU using modal data. Shabbir and Omenzetter [41] combined
Particle Swarm Optimization (PSO) with sequential niche tech-
nique to improve the finding of global minimum in FEMU and
applied the approach to update a linear FE model of a full-scale
pedestrian bridge using modal data. PSO was also used by Marwala
[33] to update linear FE models of a suspended aluminum beam
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and an unsymmetrical structure tested on a laboratory environ-
ment. Perera et al. [40] used PSO and modal data to update a linear
FE model of a one-story one-bay reinforced concrete (RC) frame
experimentally tested and compared the results with those
obtained using Genetic Algorithms (GAs). Hasançebi and Dumlupi-
nar [21] used artificial neural networks (ANNs) to updated FE mod-
els of a real RC bridge using the identified natural frequencies and
measured static deflections. They employed linear and nonlinear
FE models to generate datasets for network training and concluded
that nonlinear models provide a better agreement between the
updated FE model and the experimental data, especially for static
deflection measurements. Betti et al. [9] combined ANNs and GAs
to update a linear FE model of a reduced scaled three-story one-
by-one bay steel frame at different damage levels using modal
data. Other researchers have employed ANNs for FEMU and DID
purposes (e.g., [4,16,52,33]). Hao and Xia [20] used modal data
and GAs to identify damage in a cantilever beam and a two-
dimensional steel frame tested in laboratory conditions. Meruane
and Heylen [35] used parallel GAs to identify damage in a RC beam
and a simple and small aircraft prototype using model updating
based on modal data. Chisari et al. [12] utilized GAs to update a lin-
ear FE model of an isolated bridge using experimentally collected
static and dynamic data. Kang et al. [28] combined artificial bee
colony algorithm with Nelder-Mead simplex method and applied
the hybrid approach to identify the model parameters of concrete
dam-foundation systems using numerically simulated data. A com-
prehensive review on system identification and model updating of
civil structures using biologically-inspired (e.g., ANNs and GAs)
methods can be found in Sirca and Adeli [43]. Methodologies based
on modeling to generate alternative (MGA) have also been
employed to provide multiple alternative solutions in linear FEMU
(e.g., [53,10]). Simulated Annealing (SA) [29] has also been used to
update FE models. Levin and Lieven [30] introduced the use of SA
in FEMU and compared its performance with GAs using experi-
mental data of a flat plate wing structure. They employed various
perturbation schemes to minimize the objective function con-
structed based on experimental and FE simulated frequency
response functions.

The literature on the use of heuristic optimization methods for
structural FEMU shows only a few works that have employed SA as
an optimization method. The fact that SA has not received as much
attention as other metaheuristic optimization methods is because
the standard SA requires a large number of annealing cycles to con-
verge to a satisfactory solution. This means that many simulations
of the FE model need to be run during the sequential SA process.
This issue limits the applicability of SA in large scale and
physics-based complex FE models of geo-materials and structures
such as tunnels, building, dams, and bridges. Zimmerman and
Lynch [54] proposed the parallel SA implemented on a wireless
sensor network for structural health monitoring (SHM) that
reduces the runtime of the SA algorithm by breaking the annealing
into a number of temperature steps, each run on a separate com-
puter node supported with appropriate communication to other
wireless nodes. Jeong and Lee [26] as well as He and Hwang [22]
combined GAs with SA to create an adaptive SA-GA that can fix
the poor hill-climbing capability of the GA for applications in gen-
eric system identification and damage detection, respectively.

In this paper, an acceleration scheme recently proposed by
some of the authors to reduce annealing steps of the SA by local
improvements of the accepted candidates is employed to solve
structural FEMU problems. The hybridized scheme has proved
effective for a parameter identification problem of waveform
inversion of the underground tunnel seismic waves in Nguyen
and Nestorović [39]. Similar to the principle in Martin and Otto
[32], a method for improving an intermediate candidate locally is
coupled to the main SA algorithm. However, in contrast to the idea

in Martin and Otto [32], the local improvement method employed
in this work is run only if the suggested candidate is accepted fol-
lowing the Metropolis’ rule, thus reducing the number of FE model
evaluations. The combined global-local optimization method pre-
sented in this work couples SA algorithm with the unscented Kal-
man filter (UKF). The UKF [27], which belongs to the sigma-point
Kalman filter family, is a derivative-free estimator for nonlinear
state-space models that can be efficiently adapted for solving
parameter identification of static and dynamic models [50]. As
shown later in the paper, the choice of the UKF as a local minimiza-
tion method is based on the observation that the UKF can be very
efficient to converge to a nearby local minimum. Application
examples consisting of a test function (the Styblinski–Tang func-
tion) with six parameters and linear and nonlinear FE models are
presented to verify the performance of the proposed method. For
the FEMU examples, inverse problems involving different number
of model parameters are analyzed and modal and time history data
simulated numerically from realistic three-dimensional steel
frame structures are used in the objective functions. Accurate
results are obtained in the different application examples even
when a limited number of response quantities (modal properties
or time history responses) are used to define the objective func-
tion. The hybrid scheme improves the accuracy and reduces the
computational cost of the standard SA algorithm, proving that its
application to realistic civil structures is feasible. The effects of
using modal parameters, acceleration time history responses, and
heterogeneous time history response quantities on the estimation
results are investigated. Based on the analyses presented in the
paper, values for the parameters involved in the hybrid scheme
are proposed to solve FEMU problems. It is noted that properly cal-
ibrated nonlinear FE models can be used to identify potential dam-
age in the structure, providing an excellent tool for SHM. It is worth
nothing that the hybrid scheme also has the capability to be
employed with surrogate models.

2. Simulated annealing combined with the unscented Kalman
filter

2.1. Forward model and the objective function

The forward model that relates hidden model parameters to
responses, for both linear and nonlinear finite element models,
can be generally represented as

d ¼ hðmÞ þ v; ð1Þ
where vector m contains n hidden parameters of the model, d
stores the model outputs obtained from the computational model
hð�Þ. Modeling errors v are caused by assumptions made in building
the mathematical model and the numerical approximations
involved. Throughout this work, v is assumed to be a stationary,
zero-mean Gaussian white vector process with covariance Rm. Mea-
suring the real life structural responses for the corresponding

observed quantities results in a set of measurement data dobs that
are intrinsically contaminated by measurement noise. Measure-
ment noise is often satisfactorily represented as having normal dis-

tribution with zero-mean and covariance Robs. Then, the total
observation error covariance is formed by the addition rule

R ¼ Robs þ Rm [45]. In this work the effects of modeling uncertainty
are not considered since the same models are employed in the sim-
ulation and estimation phases. Thus, the total observation error
covariance consists of the measurement noise covariance only,

i.e., R ¼ Robs.
In this work, different definitions to build the objective function

that needs to be minimized are used. For the proposed algorithm, it
is desired that the L2 norm of the residual is broken down into r
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