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a b s t r a c t

Functionally graded plates whose material properties vary continuously through the thickness are mod-
elled as exactly equivalent plates composed of up to four isotropic layers. Separate models are derived for
analysis using classical plate theory, first-order and higher-order shear deformation theory. For cases
where Poisson’s ratio varies through the thickness, the integrations required to obtain the membrane,
coupling and out-of-plane stiffness matrices are performed accurately using a series solution. The model
is verified by comparison with well converged solutions from approximate models in which the plate is
divided into many isotropic layers. Critical buckling loads and undamped natural frequencies are found
for a range of illustrative examples.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded (FG) materials can be defined as those
which are formed by gradually mixing two or more different mate-
rials, with the main aim of adapting their physical properties to the
external environment. The variation of properties is required to be
as smooth as possible in order to avoid phenomena such as stress
concentrations which could lead to the development or propaga-
tion of fractures.

Nature provides examples of materials whose physical proper-
ties vary gradually, but the concept of synthetically manufactured
FG materials was first developed in Japan in the early 1980s [1].
The simplest kind of FG material is made from gradually varying
proportions of two constituent materials, usually with comple-
mentary properties. For example, in a FG material composed of
metal and a ceramic reinforcement, the ceramic material con-
tributes heat and oxidation resistance, while the metal provides
toughness, strength and the bonding capability needed in order
to minimize residual stresses. Furthermore some crucial proper-
ties, such as thermal insulation and impact resistance, can be con-
veyed to the material by varying the internal pore distribution.

Pioneering manufacturing techniques include powder metal-
lurgy, physical and chemical vapour deposition, plasma spraying,
self-propagating high temperature synthesis and galvanoforming
[1]. Property changes during FG material processing are commonly
performed by functions of the chemical composition, microstruc-
ture or atomic order, which depend on the position within the ele-

ment [2]. Property variation through the thickness of a FG plate is
achieved by bulk processing or stacking, layer processing by
molecular or mechanical deposition, thermal and electrical pre-
form processing or melt processing. It is also possible to vary prop-
erties in the same plane by means of technologies such as
ultraviolet irradiation [3]. Jet solidification and laser cladding per-
mit greater variation and are suitable for a wide range of layer
thicknesses. Solid freeform fabrication is an advanced production
technique which can be controlled by computers.

Although the most important applications of FG materials have
taken place in the aerospace industry, mechanical engineering,
chemical plants and nuclear energy, they are now attracting atten-
tion in optics, sports goods, car components, and particularly in
biomaterials by means of prostheses. Modern FG implants allow
the bone tissues to penetrate between the metallic (often titanium)
part and the bone by means of the hydroxyapatite (a transition
porous material), forming a graded layup in which a suitable bond-
ing is developed [1].

In engineering it is important to highlight the effects of FG
materials in turbomachinery components such as rotating blades,
since by varying the gradation it is possible to alter the natural fre-
quencies in order to guarantee stability at particular spinning
speeds. Finally it is worth mentioning smart applications, in which
piezoelectric sensors and actuators are integrated into the FG
material to control vibrations or static responses in structures [3].

Natural frequencies and critical buckling loads of FG plates have
been tabulated by various authors [4–7], and it was shown by
Abrate [8,9] that these results are proportional to those for homo-
geneous isotropic plates. Coupling between in-plane and out-of-
plane behaviour can be accounted for by an appropriate choice of

http://dx.doi.org/10.1016/j.compstruc.2015.09.009
0045-7949/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: kennedyd@cf.ac.uk (D. Kennedy).

Computers and Structures xxx (2015) xxx–xxx

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc

Please cite this article in press as: Kennedy D et al. Equivalent layered models for functionally graded plates. Comput Struct (2015), http://dx.doi.org/
10.1016/j.compstruc.2015.09.009

http://dx.doi.org/10.1016/j.compstruc.2015.09.009
mailto:kennedyd@cf.ac.uk
http://dx.doi.org/10.1016/j.compstruc.2015.09.009
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc
http://dx.doi.org/10.1016/j.compstruc.2015.09.009
http://dx.doi.org/10.1016/j.compstruc.2015.09.009


the neutral surface [10–12]. Thus the behaviour of FG plates can be
predicted from that of similar homogeneous plates. These ideas
were exploited to obtain an equivalent isotropic model for a FG
plate [13] so that it can be analysed using existing methods based
on classical plate theory (CPT) for homogeneous plates. This model
was shown to give an exact equivalence when the two component
materials have the same Poisson’s ratio, but otherwise a small
approximation is introduced. The analysis of FG plates with vary-
ing Poisson’s ratio poses a greater challenge due to the complexity
of the integrals which have to be evaluated in order to obtain the
in-plane, coupling and flexural stiffness matrices, even when the
analysis is restricted to CPT. Efraim proposed an alternative
approach [14] in which these integrations are approximated, while
the present authors performed the integrations accurately [15]
using a series solution proposed by Dung and Hoa [16].

The present paper includes the previously derived CPT models
and examples [13,15] and then makes important extensions to
first-order (FSDT) and higher-order (HSDT) shear deformation the-
ory so as to permit accurate solutions for thick functionally graded
plates. Section 2 introduces an equivalent (single layer) isotropic
plate model for use with CPT under the assumption that Poisson’s
ratio does not vary through the thickness of the plate. This assump-
tion is relaxed in Section 3, where an exactly equivalent plate com-
posed of two isotropic layers is derived for CPT by solving an
inverse problem to satisfy six independent stiffness requirements.
Section 4 demonstrates that the extension of these models to FSDT
is trivial, and then outlines extensions to HSDT giving equivalent
plates with three and four layers, respectively. The numerical
results in Section 5 verify the proposed models, and also demon-
strate its accuracy in finding critical buckling loads and natural fre-
quencies of FG plates, using the different plate theories. Section 6
summarises the conclusions and suggests further extensions to
the method.

2. Equivalent isotropic plate for CPT with constant Poisson’s
ratio

Consider a FG plate of thickness h lying in the xy plane with the
origin at mid-surface, having material properties which vary
through the thickness (zÞ direction. Using standard notation, the
plate constitutive relations of CPT are written as

N ¼ Ae0 þ Bj M ¼ Be0 þ Dj ð1Þ
where the vectors N;M; e0 and j contain perturbation membrane
forces per unit length, perturbation bending and twisting
moments per unit length, perturbation mid-surface membrane
strains, and perturbation curvatures and twist, respectively. The
membrane, coupling and out-of-plane stiffness matrices are
given by

A ¼
Z h=2

�h=2
EðzÞQ ðzÞdz B ¼

Z h=2

�h=2
EðzÞQ ðzÞzdz

D ¼
Z h=2

�h=2
EðzÞQ ðzÞz2dz ð2Þ

respectively, where

Q ðzÞ ¼
Q11ðzÞ Q12ðzÞ 0
Q12ðzÞ Q11ðzÞ 0

0 0 Q66ðzÞ

2
64

3
75 ð3Þ

with

Q11ðzÞ ¼ 1
1�mðzÞ2 Q12ðzÞ ¼ mðzÞQ11ðzÞ

Q66ðzÞ ¼ 1
2 Q11ðzÞ � Q12ðzÞð Þ

)
ð4Þ

Young’s modulus EðzÞ, Poisson’s ratio mðzÞ and density qðzÞ are
assumed to vary through the thickness according to the rule of
mixtures

EðzÞ ¼ Em þ VðzÞEd mðzÞ ¼ mm þ VðzÞmd qðzÞ ¼ qm þ VðzÞqd ð5Þ
where

Ed ¼ Er � Em md ¼ mr � mm qd ¼ qr � qm ð6Þ
Here, subscripts m and r denote the properties of the metal and
reinforcement components, respectively, and VðzÞ is a function rep-
resenting the volume fraction of the reinforcement, which is
assumed to follow the commonly encountered power law

VðzÞ ¼ 1
2
þ z
h

� �n

ð7Þ

The non-negative volume fraction index n controls the variation
of the properties of the FG plate, as illustrated in Fig. 1. As n
approaches zero the plate consists essentially of reinforcement
material, while as n approaches infinity it consists essentially of
matrix material.

If both materials have the same Poisson’s ratio mm ¼ mr ¼ m0,
then

A ¼ AFQ 0 B ¼ BFQ 0 D ¼ DFQ 0 ð8Þ
where

Q ðzÞ � Q 0 ¼ 1
1� m20

1 m0 0
m0 1 0
0 0 1

2 1� m0ð Þ

2
64

3
75 ð9Þ

and

AF ¼
R h=2
�h=2 EðzÞdz ¼ h Em þ Ed

nþ1

� �
BF ¼

R h=2
�h=2 EðzÞzdz ¼ h2

2
nEd

nþ1ð Þ nþ2ð Þ

DF ¼
R h=2
�h=2 EðzÞz2dz ¼ h3

12 Em þ 3 n2þnþ2ð ÞEd
nþ1ð Þ nþ2ð Þ nþ3ð Þ

� �

9>>>>>=
>>>>>;

ð10Þ

The presence of BF indicates coupling between the in-plane and out-
of-plane behaviour.

Now consider an isotropic plate of thickness h�, Young’s modu-
lus E�, Poisson’s ratio m� ¼ m0, whose neutral surface is offset by d�

above the geometric mid-surface. The membrane, coupling and
out-of-plane stiffness matrices are given by

A ¼ E�h�Q 0 B ¼ E�h�d�Q 0 D ¼ E� h�3

12
þ h�d�2

 !
Q 0 ð11Þ

and is therefore equivalent to the FG plate of Eq. (8) if
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Fig. 1. Variation of Young’s modulus through the thickness of a FG plate with
volume fraction index n.
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