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a b s t r a c t 

A unified technique based on the scaled boundary finite element method is presented in this paper to analyze the 

bending, free vibration and forced vibration of thin to moderately thick beams with constant material properties 

and rectangular cross sections. The structure model is treated as a plane stress problem and the principle of 

virtual work involving the inertial force is applied to derive the scaled boundary finite element equation. Higher 

order spectral elements are used to discretize the longitudinal dimension and the solution through the thickness 

is expressed analytically as a Padé expansion. A variable transformation technique facilitates the development of 

the dynamic stiffness matrix, which leads to the static stiffness and mass matrices naturally. Rayleigh damping 

and Newmark- 𝛽 method are employed to perform the forced vibration analysis. Numerical examples covering 

static and dynamic analyses validate the excellent performance and capability of this approach. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Beam member, as one of the most important structural compo- 

nents, is widely used in various engineering applications. A consider- 

able amount of effort has been devoted to investigating its bending and 

vibration behaviors over the past years. 

The classical Euler–Bernoulli theory has long been recognized as a 

convenient approximation for slender beams and serves as a corner- 

stone for structural analysis and design [1] . However, the model be- 

comes invalid for non-slender beams and tends to slightly overestimate 

the natural frequencies especially for higher modes. Based on previous 

developments, an improved beam theory was proposed by Timoshenko 

[2,3] which takes into account the rotary inertia and shear deformation. 

The subsequent emergence of the finite element method brought about 

overwhelming interest in the numerical implementation of the Timo- 

shenko theory due to its relatively wide applicability and C ° continu- 

ity requirement. Earlier Timoshenko beam finite elements [4–8] differ 

from each other either in the choice of displacement field variables and 

the corresponding interpolation functions or in the formulation tech- 

niques used to develop the finite element models. Particularly, when 

linear shape functions are used for both transverse displacement and 

rotation, the element behaves very stiff in the thin beam limit. Such 

phenomenon is known as shear locking whose source was shown to be 

the mathematical operations involved in the shape function definitions 

and subsequent integration of functionals [9] . Obviously, shear locking 

restricted the application of Timoshenko beam finite elements to some 
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extent. Special and continuous attention has henceforth been focused to 

overcome the locking problem or to develop other more efficient beam 

elements. 

Reduced integration and selective reduced integration [9–11] are 

apparently the earliest attempts to remedy the deficiency of the shear 

deformable beam elements. Unfortunately, such techniques fail to en- 

sure complete removal of spurious constraints [9] . From the perspective 

of dynamic analysis, reduced integration improves the convergence for 

the bending dominated spectra but introduces additional errors in the 

shear energy terms which in turn reduces the convergence rate of the 

frequencies of the shear dominated spectra [12] . In comparison, field 

consistent method [9,13,14] is a more fundamental treatment of lock- 

ing phenomenon because it enables the elements to reproduce only the 

true constrained strain states. Nevertheless, these elements cannot lead 

to the two-node superconvergent element [15–17] though shear lock- 

ing is successfully avoided. The superconvergent beam element is based 

on interdependent interpolations of transverse and rotational displace- 

ments and possesses the superconvergent character for static problems. 

When it comes to dynamic cases, however, the locking-free element ex- 

hibits slow convergence in predicting flexural frequencies and would 

not represent pure shear frequencies accurately [17] . 

Mixed formulations provide alternative approaches to circumvent 

the shear locking suffered by conventional Timoshenko beam finite el- 

ements. It has been shown that certain classes of mixed formulations 

are actually equivalent to the displacement models with reduced inte- 

gration scheme [11] . An assumed strain-displacement beam model was 
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developed by Reddy [17] based on a variational form where the dis- 

placements and strains are treated as independent field variables. More 

generally, from a three-field variational form based on an extension 

of Hu–Washizu principle Taylor et al. [18] proposed a finite element 

method for the solutions to Timoshenko beams. Contrary to the more 

traditional displacement-related methods mentioned above, a force- 

based formulation was recently employed to combine a higher order 

beam theory to construct an innovative beam finite element [19] . The 

model is inherently free from shear locking and exhibits other promising 

capabilities. 

The finite element formulations based on higher order beam theories 

[20,21] , in which the requirement for a shear coefficient is eliminated, 

are preferable for avoiding shear locking. Heyliger and Reddy [22] de- 

veloped a higher order beam finite element and studied the bending 

and vibrations of isotropic beams. Subsequently, a unified finite element 

model [23] that contains the Euler-Bernoulli, Timoshenko and simpli- 

fied Reddy third-order beam theories as special cases was presented. The 

beam element does not experience locking and the general stiffness ma- 

trix can be specialized to any of the three theories by merely assigning 

proper values to the parameters involved in the development. Progres- 

sively, in the framework of Carrera’s Unified Formulation (CUF) refined 

beam elements [24] were proposed for more general analyses, where 

CUF offers a systematic procedure to obtain refined structural models 

by considering the order of the theory as a free parameter. Naturally, 

both classical beam elements and higher order beam elements can be 

derived as particular cases of the hierarchical formulation. These CUF 

models were afterwards extended to the dynamic response analysis of 

slender structures [25] . 

It is well known that locking can be alleviated by increasing the poly- 

nomial degree of the approximations. The correlated work for beam sit- 

uations was initiated by Li [26] who analyzed the p and hp versions of 

the finite element method and proved error estimates independent of the 

aspect ratio of the beam. Spectral elements and hierarchical elements, 

which both belong to the p -type finite elements but differ in the adop- 

tion of element shape functions, were recently examined and employed 

to perform the dynamic analysis of Timoshenko beams [27,28] . In addi- 

tion, a family of discontinuous Galerkin methods originated by Celiker et 

al. [29] was devised for the Timoshenko beam problem. These methods 

were then shown to be free from locking through the error analysis for 

their hp versions [30] . In contrast with the aforementioned Galerkin ap- 

proximation procedures, isogeometric collocation methods [31] opened 

another door to dealing with shear locking. Originally, da Veiga et al. 

[32] developed locking-free mixed formulations for straight planar Tim- 

oshenko beams in the context of isogeometric collocation approaches. 

After that single-variable isogeometric collocation and Galerkin meth- 

ods for the Timoshenko beam problem were established by Kiendl et 

al. [33] . These formulations are completely locking-free and involve 

less degrees of freedom compared with standard Timoshenko beam 

elements. 

Above is a rough literature review on various numerical techniques 

for locking-free beam analyses in statics and dynamics. In addition to 

applicability, however, other important aspects including accuracy, 

convergence, computational efficiency and the complexity level of 

mathematical formulation should also be taken into account when we 

evaluate a certain numerical approach. Unfortunately, none of these 

methods is found to be distinctly superior to the rest in all aspects. The 

fact stimulates ongoing interest in developing more general, more effi- 

cient and more robust numerical methods for analyzing beam structures. 

The scaled boundary finite element method (SBFEM) [34] is a semi- 

analytical procedure which combines the advantages of the finite ele- 

ment method and the boundary element method and also exhibits ap- 

pealing features of its own. This has been demonstrated by its success- 

ful applications to various engineering problems associated with soil- 

structure interaction [35–38] , unbounded domains [39] , stress singu- 

larities [40,41] , crack propagation [42,43] , potential flow [44] , wave- 

structure interaction [45] , liquid sloshing [46,47] , structural dynam- 

ics [48] , acoustics [49,50] , viscoelasticity [51] , elastoplasticity [52,53] , 

thin-walled beams [54] , static electricity [55] , wave propagation [56] , 

heat conduction [57] , stress analysis [58,59] and stochastic analysis 

[60] . Particularly, the SBFEM was employed to establish a unified tech- 

nique [61] for plate bending analysis which is based on the three- 

dimensional linear elastic theory and does not exhibit shear locking. 

The technique was subsequently improved [62] by substituting the orig- 

inal Taylor expansion for Padé expansion in approximating the relevant 

matrix exponential to construct the stiffness matrix more efficiently. 

This modified procedure has been applied to analyze piezoelectric plates 

[63] and magneto-electro-elastic plates [64,65] . However, all the afore- 

mentioned studies focus only on the static behaviors of plate structures. 

The first attempt for dynamic analysis of structures using the numerical 

approach in [62] was made by Xiang et al. [66] who investigated the 

free vibration and mechanical buckling of composite plates. Unfortu- 

nately, the mass matrix and the geometric stiffness matrix were derived 

by the conventional finite element method, different from the manner 

in which the static stiffness matrix was constructed. Additionally, it is 

obvious that the bending of beams has not been examined in the frame- 

work shown in [62] , let alone their dynamic behaviors. 

The objective of this paper is to present a truly consistent technique 

for the dynamic analyses of thin and moderately thick beams by extend- 

ing the technique shown in [62] . The structure model is handled as a 

plane stress problem and the corresponding scaled boundary finite ele- 

ment equation is derived by applying the principle of virtual work that 

incorporates the work contributed by the inertial force, which devel- 

ops the formulation concept in [62] . Higher order spectral elements are 

used to discretize the longitudinal dimension of the beam and the solu- 

tion through the thickness is expressed analytically as a Padé expansion. 

A variable transformation technique facilitates the development of the 

dynamic stiffness matrix, which produces the static stiffness and mass 

matrices naturally. The numerical example on free vibration analysis 

demonstrates that the present method is superior to the one shown in 

[66] in predicting natural frequencies of structures. Both static and dy- 

namic examples on regular beams with various slenderness ratios are 

investigated to validate the accuracy and applicability of the proposed 

approach. The forced vibrations of two stepped beams are also explored 

to highlight the capability and computational efficiency of the present 

technique. 

The remainder of this paper is structured as follows. Section 

2 presents the formulation of the basic problem. The corresponding so- 

lution procedure is provided in Section 3 . Following is Section 4 which 

contains both static and dynamic numerical examples. Concluding re- 

marks are given in Section 5 . 

2. Problem formulation 

2.1. Basic representation 

A regular beam with length L , constant height h and width b is shown 

in Fig. 1 . The z and x coordinates of the Cartesian coordinate system are 

chosen along the transverse and longitudinal directions of the beam, 

respectively. Note that the beam is treated as a plane stress problem. 

Let the time-varying generalized displacements { u ( x, z, t )} at any point 

within the structure be expressed as the column vector 

{ 𝑢 } = 

[
𝑢 𝑧 𝑢 𝑥 

]T 
(1) 

where u z and u x are the displacement components along the z- and x - 

directions. The strain vector { 𝜀 } is expressed as [67] 

{ 𝜀 } = 

[
𝜀 𝑧 𝜀 𝑥 𝛾xz 

]T = [ 𝐿 ] { 𝑢 } (2) 

with the differential operator 

[ 𝐿 ] = 
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