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A time domain boundary element method (TBEM) is applied to predict the horn effect. As the time response 

calculated by the time domain boundary integral equation contains the resonance components, when transformed 

to the frequency domain, the result will corrupt at the characteristic frequencies. To overcome this problem, a 

Burton–Miller-type combined time domain integral equation in half-space is applied. The resonance components 

are excluded in the time domain calculation, thus the corruptions are avoided in the frequency domain. As a 

result, the horn effect can be predicted very well at all frequencies. Compared to the frequency domain boundary 

element method for predicting the horn effect, the TBEM is more efficient due to the lower cost of forming 

coefficient matrices and solving equations. A numerical simulation is carried out to demonstrate the efficiency 

of the TBEM, and two experiments are conducted to validate the proposed method in predicting the horn effect. 

Both numerical and experimental results indicate that the proposed method is reliable and efficient in predicting 

the horn effect. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Tire/road noise is one of the most important sources of noise pol- 
lution in urban areas. The mechanism of tire/road noise has been long 
investigated [1–9] . It has been proved that the horn effect, which states 
that the sound in a horn-like geometry formed by the tire/road inter- 
face would be amplified, plays an important role in generating tire/road 
noise. The horn effect has been deeply studied both numerically and ex- 
perimentally. Experimental methods are appropriate in exploring the 
mechanism of the horn effect, however, they do not fit the prediction 
of the horn effect due to the critical environmental requirement and 
the high expense. Therefore, many numerical and analytical approaches 
have been proposed to predict the horn effect. The analytical methods 
are usually fast and simple, such as the two dimensional cylinder model 
[8] , the three-dimensional sphere model [10] , the ray theory [9,11] and 
the combined model proposed recently [12] . However, drawbacks of 
the analytical methods are also clear. Analytical methods usually adopt 
simplified models, ignoring some details which may be important to the 
horn effect. As a result, they are not very accurate at all the frequen- 
cies of interest. Along with the analytical approaches, some numerical 
methods are also applied in the horn effect investigation, and one of the 
most frequently used methods is the boundary element method (BEM). 
BEM can deal with the sophisticated details of the tire model, and thus 
more precise results can be obtained. In fact, the horn effect amplifi- 
cation factors calculated by the BEM are usually used as a benchmark 
[9,12–14] . 
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The BEM is a powerful tool in the horn effect investigation, however, 
improvement can still be made according to the deficiency of the BEM 

depicted in the following part. The horn effect prediction using BEM 

is usually carried out in the frequency domain. One of the disadvan- 
tages of the frequency domain boundary element method (FBEM) is the 
well-known non-uniqueness problem, however, this can be overcome 
by the CHIEF (combined Helmholtz integral equation formulation) or 
the Burton–Miller method [15–17] . Another disadvantage of the FBEM 

in predicting the horn effect is its low efficiency. The FBEM has to cal- 
culate the horn effect at each frequency of interest one after another, 
because the fundamental solution used in FBEM is dependent on fre- 
quency and all the coefficients in the FBEM have to be recalculated at 
different frequencies. The frequency dependent property makes the ef- 
ficiency of the FBEM low when the number of frequencies of interest is 
large, as is usually the case with the horn effect prediction. 

To improve the efficiency, the time domain boundary element 
method (TBEM) which uses a frequency independent fundamental solu- 
tion is considered as an alternative to FBEM in the horn effect prediction. 
In TBEM, the coefficients need to be calculated only once for all the fre- 
quencies. In this way, a lot of time can be saved in the calculation. To 
realize the horn effect prediction using TBEM, the response to a wide- 
band signal at the receiver position is firstly calculated by solving the 
time domain boundary integral equation (TDBIE), and then the response 
is transformed to the frequency domain to get the spectra, at last, the 
horn effect can be predicted using the spectra. Nezhi [18] investigated 
the horn effect using the TBEM in his research on the sound radiation 
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Fig. 1. Geometry of the half-space scattering problem. The scatter is placed on the ground 

with a smooth boundary Γ, the normal vector n to the boundary Γ points inward. A point 

source denoted as S is placed above the ground. The horizontal distance between the origin 

O and the receiver is denoted as d . 

of tires. However, as a first trial, only a qualitative result was obtained 
in comparison with the experimental result. In addition, the resonance 
components of the TBEM [19] which could greatly distort the spectra 
were not considered in his research. 

In this paper, the TBEM is applied to acquire a quantitative and a 
highly efficient prediction of the horn effect. To ensure a quantitative re- 
sult, the resonance components of the TBEM are excluded by exploiting 
a Burton–Miller-type combined time domain integral equation (CTDIE) 
[19,20] instead of using TDBIE. The use of CTDIE makes the TBEM free 
from the corruptions at the characteristic frequencies. To illustrate the 
efficiency of the TBEM in predicting the horn effect, the comparison of 
the consumed time between the TBEM and the FBEM is also conducted. 

2. Theory 

2.1. Horn effect prediction 

The horn effect problem is actually an acoustic scattering prob- 
lem in half-space. The schematic geometry of the problem is shown in 
Fig. 1 . 

A scatterer representing a tire is placed on the ground. By exploiting 
the reciprocal theorem which states that the pressures are unchanged 
when the locations of the source and the receiver are interchanged, a 
point source S is positioned at a distance from the scatterer above the 
ground, and the receiver is placed within the tire/road gap. The pressure 
at the receiver is contributed by four parts: incident pressure from the 
source and reflected pressure of the source by the ground, and incident 
pressure from the scatterer and reflected pressure of the scatterer by the 
ground. The horn effect can be quantified by comparing the total pres- 
sure created by the source with the scatterer to the reference pressure 
created by the source without the scatterer. 

The numerical horn effect prediction in the time domain initiates 
with a wideband transient input, for example, the Dirac impulse. With 
the source generating an impulse, the response at the receiver can be 
calculated by solving the TDBIE. Transforming the response to the fre- 
quency domain using the fast Fourier transformation (FFT), the amplifi- 
cation factor for describing the horn effect can be obtained through the 
following formula 

𝐿 amp = 20 log 10 
𝑃 total 
𝑃 ref 

, (1) 

where, P total represents the total pressure at the receiver, and P ref repre- 
sents the reference pressure which can be obtained by transforming the 
response at the receiver without the scatterer. 

2.2. Time domain boundary integral equation 

Consider the scattering problem depicted in Fig. 1 , the scatterer with 
a smooth boundary Γ emerges in a homogeneous media with a density 
of 𝜌. The unit normal vector at point x is denoted as n x , and the normal 
vector to the surface Γ points inward. The velocity potential at point x 

at time t is denoted as 𝜑 ( x , t ). The point source generates an impulse at t 
> 0. Suppose the scatterer is acoustically rigid, the boundary condition, 
𝜕 𝜑 ( x , t )/ 𝜕 n x | x ∈Γ =0, is imposed in this problem. The velocity potentials 
on the surface of the scatterer can be determined by means of solving 
the TDBIE which can be expressed as [21] 
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(2) 

where L is defined as the velocity potential operator, 𝜏 is the retarded 
time, r = | x − y | is the distance between the point x and the surface point 
y , 𝜑 

i ( x , t ) is the incident item generated by the point source, g ( r , 𝜏) rep- 
resents the transient fundamental solution in half-space which can be 
expressed as [22] 
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where c is the sound speed, r ′ is the distance between the surface point 
y and the image point of x , 𝛿 is the Dirac delta function, and 𝜎 is the 
impedance item. By solving Eq. (2) , the surface potentials can be ob- 
tained, and then the potential at the receiver can be calculated with a 
simple substitution of the surface potentials as 

𝜑 ( 𝐱, 𝑡 ) = − ∫Γ ∫
𝑡 

0 

𝜕 

𝜕 𝐧 𝑦 
𝑔 ( 𝑟, 𝜏) 𝜑 ( 𝐲, 𝜏) 𝑑 𝜏𝑑 Γ + 𝜑 

𝑖 ( 𝐱, 𝑡 ) , 𝐱 ∈ Γ+ , 𝐲 ∈ Γ, (4) 

where Γ+ denotes the region outside of the surface Γ. With the potential 
known, the pressure can be easily derived by the following formula 

𝑝 ( 𝐱, 𝑡 ) = − 𝜌
𝜕 

𝜕𝑡 
𝜑 ( 𝐱, 𝑡 ) , (5) 

and then the horn effect of the scatterer can be quantified using Eq. (1) . 
Although Eq. (2) can be used directly for horn effect prediction, the 

results are not very accurate at the characteristic frequencies, which are 
well known for the non-uniqueness problem in the frequency domain. 
The reason is that the response calculated by the TDBIE contains the res- 
onance components. When the response is transformed to the frequency 
domain, the corruptions of the TDBIE at the characteristic frequencies 
can be seen clearly. The corruptions have been discussed in detail in 
[19] , and a Burton–Miller-type CTDIE was proposed to eliminate the 
corruptions. In the following, the Burton–Miller-type CTDIE is extended 
to half-space to overcome the corruptions at the characteristic frequen- 
cies. 

2.3. Burton–Miller-type CTDIE 

The Burton–Miller-type CTDIE imposes a linear combination of the 
time derivative and the normal derivative of the TDBIE, which can be 
expressed as 
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where 𝛼 is a real constant ranging from 0 to 1, and 
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𝑖 ( 𝐱, 𝑡 ) . (8) 

In Eq. (6) , it is obvious that 𝜕 𝜑 ( x , t )/ 𝜕 n x | x ∈Γ =0, according to the 
boundary condition. The integral in Eq. (8) contains a hypersingular 
integral which should be carried out with special care. In this study, 
a similar procedure to that performed by Terai [23] in the frequency 
domain is adopted to evaluate the hypersingular integral. 
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