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a b s t r a c t 

Frequency averaged normal-derivative Helmholtz integral equation is proposed to get robust predictions of 

the frequency averaged quadratic pressure (FAQP) radiated from the structures at medium and high frequen- 

cies. The non-uniqueness problem of frequency averaged Helmholtz integral equation and frequency averaged 

normal-derivative Helmholtz integral equation is overcome by the coupling method combining these two in- 

tegral equations. The numerical examples are given to demonstrate the versatility of the frequency averaged 

normal-derivative Helmholtz integral equation and the coupling method. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Conventional boundary element method (conventional BEM) has 
been widely applied in acoustics for the solution of radiation and scat- 
tering boundary value problems [1] . However, the prediction of noise 
radiated from machinery with conventional BEM is a difficult problem 

for four main reasons: firstly, sufficient elements are dispersed to predict 
the pressure radiated from structures for accuracy. It means that more 
elements are needed to resolve both the vibration and sound pressure at 
higher frequencies. Secondly, for the real-life structures with a very sen- 
sitive vibro-acoustic behavior, the radiating pressure strongly varies at 
a given frequency for different objects of the identical industrial produc- 
tion due to small dispersion of geometry, material and manufacturing 
process. Thirdly, frequency averaging manipulation of each pure tone 
prediction at medium and high frequencies makes conventional BEM 

troublesome in the process of predicting noise radiated from structures 
submitted to broad band excitation. Fourthly, it is impossible to describe 
the vibrational behavior of large and complex machines with enough in- 
formation about the field-measured vibration with great changes, espe- 
cially at high frequencies, even if the same measurements are repeated 
[2–5] . 

For enclosed high-frequency sound fields, a boundary element 
method was developed by Franzoni [6–8] in terms of time-averaged en- 
ergy and intensity variables with broadband acoustic energy/intensity 
sources. In order to get robust predictions at medium and high frequen- 
cies in an unbounded medium, a general integral equation approach 
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to predict the Frequency Averaged Quadratic Pressure (FAQP) radiated 
from vibrating bodies was proposed by Guyader in [3] . As mentioned 
in [3] , the frequency averaging does not suppress the characteristic 
wavenumber problem and regularization methods have to be used in 
a similar way to avoid the calculation of the instability. In the con- 
ventional BEM, to overcome the non-uniqueness problem, two major 
formulations, the Combined Helmholtz Integral Equation Formulation 
(CHIEF) and the Burton and Miller method, were proposed by Schenck 
[9] and by Burton and Miller [10] , respectively. The CHIEF method gen- 
erates an overdetermined system of equations to find the solution that 
satisfies both the surface and the interior Helmholtz integral equation 
to predict pressure in the exterior. The CHIEF method’s primary short- 
coming is that for an arbitrary geometry, the nodal surfaces are not 
known a priori, so the selection of number and location of the CHIEF 
points becomes critical [11] , especially at high frequencies, although 
Wu improved the CHIEF method by using a few CHIEF points at every 
frequency and increase the number of CHIEF points as frequency in- 
creases [12] . The Burton and Miller method provides unique solutions 
for all frequencies by using a linear combination of the Helmholtz in- 
tegral equation and its normal derivative integral equation. Although 
the major drawback of this method is that normal-derivative Helmholtz 
integral equation has a hypersingular kernel of 1/r 3 , the hypersingular 
integral has been solved by several literatures [13–20] . To overcome the 
non-uniqueness problem of FAQP method, a combined energy bound- 
ary integral equation formulation (CEBIEF) [21] was proposed to obtain 
unique solutions at irregular frequencies. However, the CEBIEF method 
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has the similar disadvantages of the CHIEF method such as the problem 

about the selection of number and location of the CHIEF points. 
The goal of this paper is to derive a frequency averaged normal- 

derivative integral equation to predict frequency averaged quadratic 
pressure radiated from structures and propose a coupling method to 
solve the non-uniqueness problem. 

2. Theoretical formulation 

2.1. Integral equation for frequency averaged quadratic pressure [3] 

The frequency averaged quadratic pressure radiated at point P of the 
acoustic medium can be calculated from Eq. (1) ⟨|𝑝 ( 𝑃 ) |2 ⟩
= ∫𝑆 ∫𝑆 
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(1) 

where the function 

𝐺 ( 𝑄, 𝑃 ) = 𝑒 − 𝑖𝑘𝑅 ∕4 𝜋𝑅 (2) 

is the free-space Green’s function in which R = | Q − P |, the collocation 
point P is in the acoustic domain. The point Q and Q ′ are located on the 
surface and the superscript ‘∗ ’ denotes the complex conjugate. n is the 

normal vector at Q on S . 𝑖 = 

√
−1 . k is the wavenumber, c is the sound 

speed and 𝜌 is the density of the acoustic medium. The expressions of 
the boundary sources are given by Eqs. (3) –( 6 ), respectively. 
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The frequency average is made on a wavenumber bandwidth 2 Δk 

centered at Ω by Eq. (7) 

⟨ ⟩ = 

1 
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𝑑𝑘 . (7) 

The frequency averaged sound power can be calculated by 

⟨power ⟩ = 

𝑁 ∑
𝑖 

1 
2 
Re 

(
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)
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where S i represents the area of the ith element and N denotes the total 
number of elements. 

2.2. The frequency averaged Helmholtz integral equation [3] 

The boundary sources can be determined by the integral equa- 
tions of frequency averaged Helmholtz integral equation, Eqs. (9) and 
(10) [3,15,21] 
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where S − ΔQ denotes the boundary S excluding the boundary elements 
ΔQ in which the point Q and collocation point L is located. The point L ′ 
is located on the surface S . 

2.3. The frequency averaged normal-derivative Helmholtz integral equation 

With the normal-derivative Helmholtz integral equation [22] multi- 
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where n L is the normal vector at point L on S . 
With the frequency averaging ( Eq. (7) ) of Eqs. (11) and ( 12 ) and the 

assumption [3] , the statistical independence of boundary pressure and 
velocity and of the Green’s functions, Eqs. (13) and ( 14 ) are derived, 
respectively. ⟨ 
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The boundary sources for Eq. (1) can be determined by Eqs. (13) and 
( 14 ). 

2.4. The coupling method to overcome the non-uniqueness problem 

Although one can use CEBIEF method [21] to get a unique solution, it 
also accompanies the difficulty that the selection of number and location 
of the interior points becomes critical in consideration of that the nodal 
surfaces are not known a priori for an arbitrary geometry. The coupling 
method is proposed to robustly overcome the non-uniqueness of FAQP 
method at irregular frequencies for an arbitrary geometry by combin- 
ing the frequency averaged Helmholtz integral equation with frequency 
averaged normal-derivative Helmholtz integral equation. 
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