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The improved complex variable moving least squares approximation is an efficient method to generate meshless 

approximation functions. In the past, the approximation has been used only for 2D problems. In this paper, the 

approximation is developed to solve 3D problems. Theoretical error estimation of the approximation is given. 

Then, incorporating the approximation into boundary integral equations, a symmetric and boundary-only mesh- 

less method, the complex variable Galerkin boundary node method, is developed and analyzed theoretically for 

3D potential, Helmholtz and Stokes problems. Numerical results demonstrate the accuracy and efficiency of the 

developed method. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Meshless (or meshfree) methods have been developed quickly in 
the past two decades to deal with the meshing-related disadvantages 
involved in some traditional numerical methods such as the finite el- 
ement method and the boundary element method. In meshless meth- 
ods, approximations of variables need only nodes instead of elements. 
Thus, how to approximate variables is very important in meshless meth- 
ods. The moving least squares (MLS) approximation [1] is one of the 
main methods to approximate variables in meshless methods. By using 
the MLS approximation, some meshless methods, such as the element- 
free Galerkin (EFG) method [2,3] , the meshless local Petrov–Galerkin 
(MLPG) method [4] and the boundary node method (BNM) [5] have 
been developed for numerical analysis of many boundary value prob- 
lems. The MLS approximation can produce approximation functions 
with high smoothness and precision. Nevertheless, because it is the ap- 
proximation of scalar functions, the associated meshless methods re- 
quire many nodes in the computational domain [6–8] . 

To conquer the shortcoming of the MLS approximation, a complex 
variable moving least squares (CVMLS) approximation [6,7] has been 
developed by incorporating the complex variable theory into the MLS 
approximation. In the CVMLS approximation, 2D approximation func- 
tion is obtained by using 1D basis function. Hence, fewer coefficients 
and fewer nodes are needed in the CVMLS approximation than in the 
MLS approximation. The CVMLS-based meshless methods have higher 
computational accuracy and consume less CPU times than the associ- 
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ated MLS-based meshless methods [7–11] . As in the MLS approxima- 
tion, the functional used in the CVMLS approximation to solve the un- 
known coefficients is defined directly in a weighted squares form. Since 
the approximated function is expressed as a complex variable func- 
tion, the value of the functional is a complex number. Recently, an im- 
proved complex variable moving least squares (ICVMLS) approximation 
[12,13] has been developed by using the complex modulus to define a 
new functional. The ICVMLS approximation inherits all merits of the 
CVMLS approximation. Besides, the new functional denotes the best ap- 
proximation and its value is a real number. The ICVMLS-based meshless 
methods have higher computational efficiency and precision than the 
CVMLS-based methods [12–16] . 

Since the complex variable theory is valid and perfect for 2D space, 
complex variable meshless methods have been applied successfully for 
the numerical solution of 2D boundary value problems. However, the 
application of these complex variable meshless methods to 3D problems 
has not been found until now. It is therefore important to develop com- 
plex variable meshless methods for the solution of 3D problems. 

This paper is devoted to the development of the ICVMLS approxima- 
tion for solving 3D boundary value problems. The Galerkin boundary 
node method (GBNM) [17,18] is a meshless method that combines the 
MLS approximation with boundary integral equations (BIEs) [19,20] . 
In the GBNM, boundary conditions are implemented with ease, and the 
resulting system matrix is symmetric and positive definite. In this pa- 
per, the ICVMLS approximation is introduced into the GBNM to pro- 
duce a complex variable Galerkin boundary node method (CVGBNM) 
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for numerical analysis of 3D potential, Helmholtz and Stokes problems. 
With the aid of BIEs, the ICVMLS approximation used in the CVGBNM 

is performed only on the surface of a 3D domain. Using curvilinear co- 
ordinates, the 3D surface can be expressed by two parameters ( s 1 , s 2 ). 
Then, formulations of the ICVMLS approximation on the surface of a 
3D domain are developed by 1D basis functions. Owing to the merits 
of the ICVMLS approximation and the GBNM, the proposed CVGBNM is 
expected to possess higher computational efficiency. Theoretical error 
estimation of the ICVMLS approximation for 3D functions is given. Then, 
error of the CVGBNM for 3D potential, Helmholtz and Stokes problems 
is also analyzed. 

The rest of this paper is outlined as follows. In Section 2 , the ICVMLS 
approximation on a 3D surface is discussed, and error of the ICVMLS 
approximation is also presented. Then, analysis of the CVGBNM for 3D 

potential, Helmholtz and Stokes problems is given in Sections 3 and 4. 
Finally, numerical results and conclusions are provided in Sections 5 and 
6 , respectively. 

2. The ICVMLS approximation on 3D surfaces 

In this section, the ICVMLS approximation is developed and ana- 
lyzed on 3D surfaces. Because only boundary nodes are required in the 
CVGBNM for approximation of boundary unknowns, the ICVMLS ap- 
proximation is only carried out on the 3D bounding surface. 

2.1. Notations 

Let Ω be a bounded domain in ℝ 

3 with boundary Γ and let Ω′ be the 
complementary of Ω̄ = Ω ∪ Γ, that is the exterior of Ω̄. A general point of 
ℝ 

3 is denoted by 𝐱 = 

(
𝑥 1 , 𝑥 2 , 𝑥 3 

)T 
. Assume that the bounding surface Γ is 

the union of piecewise smooth segments called panels, and the edges of 
these panels are Lipschitz continuous. On each panel, surface curvilinear 
coordinates are defined as 𝐬 = 

(
𝑠 1 , 𝑠 2 

)T 
. Then, Γ can be represented in 

parametric forms as 𝑥 𝑗 = 𝑥 𝑗 
(
𝑠 1 , 𝑠 2 

)
with 𝑗 = 1 , 2 , 3 . For any point 𝐱 = 

𝐱 
(
𝑠 1 , 𝑠 2 

)
∈ Γ, let 𝑧 = 𝑠 1 + i 𝑠 2 , where i = 

√
−1 is an imaginary number. 

Assume that the influence domain of z is 

ℜ ( 𝑧 ) = { ̃𝑧 ∈ Γ ∶ |�̃� − 𝑧 | ≤ ℎ ( 𝑧 ) } 

Let 
{
𝐱 𝐼 

}𝑁 
𝐼=1 be a set of N nodes on Γ. These boundary nodes can also 

be denoted as 
{
𝑧 𝐼 

}𝑁 
𝐼=1 . Let ∧( 𝑧 ) 

Δ
= 

{
𝐼 1 , 𝐼 2 , … , 𝐼 𝜏

}
⊆ { 1 , 2 , … , 𝑁 } be the 

set of the global sequence numbers of boundary nodes whose influence 
domains cover the point z , and let 

𝑤 𝐼 ( 𝑧 ) = 𝜑 

( ||𝑧 − 𝑧 𝐼 
||

ℎ 𝐼 

) 

, 𝐼 = 1 , 2 , … , 𝑁 (1) 

be weight functions. Here, the function 𝜑 is nonnegative, 𝛾-th times con- 
tinuously differentiable, and its derivatives up to order 𝛾 are bounded. 
The weight functions w I ( z ) also have compact supports 

ℜ 𝐼 

Δ
= ℜ 

(
𝑧 𝐼 

)
= 

{
𝑧 ∈ Γ ∶ ||𝑧 − 𝑧 𝐼 

|| ≤ ℎ 𝐼 
}

(2) 

where h I is the radius of ℜ I . Then, we have 

𝐼 ∈ ∧( 𝑧 ) ⇔ 𝑧 ∈ ℜ 𝐼 ⇔ 𝑤 𝐼 ( 𝑧 ) > 0 , ∀𝑧 ∈ Γ, 𝐼 = 1 , 2 , … , 𝑁 

Let 

ℎ = max 
1 ≤ 𝐼≤ 𝑁 min 

1 ≤ 𝐽 ≤ 𝑁,𝐽 ≠𝐼 
||𝑧 𝐼 − 𝑧 𝐽 

||
be the nodal spacing. In this paper, the letter C will denote a general 
constant which is independent of h and is not necessarily the same in 

each occurrence. For theoretical analysis, assuming the data site 
{
𝑧 𝐼 

}𝑁 
𝐼=1 

satisfies the following quasi-uniform condition [9,10,21] 

𝐶 1 ℎ ≤ ℎ 𝐼 ≤ 𝐶 2 ℎ, 𝐼 = 1 , 2 , … , 𝑁 (3) 

where C 1 and C 2 are two positive constants independent of h . 
For functions f and g , we define the inner product about { z I } I ∈∧( z ) as 

( 𝑓, 𝑔 ) 𝑧 = 

∑
𝐼∈∧( 𝑧 ) 𝑤 𝐼 ( 𝑧 ) 𝑓 

(
𝑧 𝐼 

)
�̄� 
(
𝑧 𝐼 

)
, where �̄� 

(
𝑧 𝐼 

)
is the conjugate of g ( z I ). 

The corresponding norm is ‖𝑓 ‖𝑧 = 

√
( 𝑓, 𝑓 ) 𝑧 . 

2.2. Formulations 

Let u 1 and u 2 be two real value functions defined on Γ. In the ICVMLS 
approximation, the local approximation of 𝑢 ( 𝑧 ) = 𝑢 1 ( 𝑧 ) + i 𝑢 2 ( 𝑧 ) can be 
defined as 

𝑢 ( 𝑧 ) ≈  𝑢 
(
𝑧, 𝑧 ∗ 

)
= �̄� T 

(
𝑧 ∗ 

)
𝐚 ( 𝑧 ) , ∀𝑧 ∈ Γ (4) 

where  is an approximation operator, the point z ∗ can either be the 
evaluation point z or a node z I ∈ℜ ( z ), a ( z ) is a ( 𝑚 + 1 ) -dimensional col- 
umn vector, and 

�̄� T ( 𝑧 ) = 

[
�̄� 0 ( 𝑧 ) , ̄𝑝 1 ( 𝑧 ) , ̄𝑝 2 ( 𝑧 ) , ..., ̄𝑝 𝑚 ( 𝑧 ) 

]
is the conjugate of the basis vector 

𝐩 T ( 𝑧 ) = 

[
𝑝 0 ( 𝑧 ) , 𝑝 1 ( 𝑧 ) , 𝑝 2 ( 𝑧 ) , ..., 𝑝 𝑚 ( 𝑧 ) 

]
The basis vector can be chosen as [7,8,13] 𝐩 T ( 𝑧 ) = 

[
1 , 𝑧, 𝑧 2 , ..., 𝑧 𝑚 

]
. 

However, as in the MLS approximation [21,22] , to obtain more stable 
results, we should use the scaled and shifted basis vector [9,10] , 

𝐩 T ( 𝑧 ) = 

[ 
1 , 𝑧 − 𝑧 𝑒 

ℎ 
, 

(
𝑧 − 𝑧 𝑒 

ℎ 

)2 
, ..., 

(
𝑧 − 𝑧 𝑒 

ℎ 

)𝑚 ] 
(5) 

where z e is fixed and can be chosen as the evaluation point z in practical 
computations. 

The unknown vector a ( z ) in Eq. (4) is deduced by minimizing the 
following functional 

 ( 𝑧 ) = 

∑
𝐼∈∧( 𝑧 ) 

𝑤 𝐼 ( 𝑧 ) 
|||�̄� T (𝑧 𝐼 )𝐚 ( 𝑧 ) − 𝑢 

(
𝑧 𝐼 

)|||2 = 

‖‖‖�̄� T 𝐚 ( 𝑧 ) − 𝑢 
‖‖‖2 𝑧 

We can obtain the minimum of  by choosing a ( z ) such that �̄� T 𝐚 ( 𝑧 ) is 
the projection of u in the space span 

{
�̄� 0 , ̄𝑝 1 , … , ̄𝑝 𝑚 

}
. Then, (

�̄� T 𝐚 ( 𝑧 ) , ̄𝑝 𝑗 
)
𝑧 
= 

(
𝑢, ̄𝑝 𝑗 

)
𝑧 
, 𝑗 = 0 , 1 , … , 𝑚 

i.e., [ ∑
𝐼∈∧( 𝑧 ) 

𝑤 𝐼 ( 𝑧 ) ̄𝐩 T 
(
𝑧 𝐼 

)
𝑝 𝑗 
(
𝑧 𝐼 

)] 

𝐚 ( 𝑧 ) = 

∑
𝐼∈∧( 𝑧 ) 

𝑤 𝐼 ( 𝑧 ) 𝑢 
(
𝑧 𝐼 

)
𝑝 𝑗 
(
𝑧 𝐼 

)
, 

𝑗 = 0 , 1 , … , 𝑚 

It is expressed in matrix form as 

𝐀 ( 𝑧 ) 𝐚 ( 𝑧 ) = 𝐁 ( 𝑧 ) 𝐮 (6) 

where 𝐮 = 

[
𝑢 
(
𝑧 𝐼 1 

)
, 𝑢 
(
𝑧 𝐼 2 

)
, … , 𝑢 

(
𝑧 𝐼 𝜏

)]T 
, and the entries of A ( z ) and B ( z ) 

are 

𝐀 𝑘𝑗 ( 𝑧 ) = 

∑
𝐼∈∧( 𝑧 ) 

𝑤 𝐼 ( 𝑧 ) ̄𝑝 𝑘 
(
𝑧 𝐼 

)
𝑝 𝑗 
(
𝑧 𝐼 

)
, 𝑘, 𝑗 = 0 , 1 , … , 𝑚 (7) 

and 

𝐁 𝑗𝓁 ( 𝑧 ) = 𝑤 𝐼 𝓁 
( 𝑧 ) 𝑝 𝑗 

(
𝑧 𝐼 𝓁 

)
, 𝑗 = 0 , 1 , … , 𝑚 ; 𝓁 = 1 , 2 , … 𝜏; 𝐼 𝓁 ∈ ∧( 𝑧 ) 

(8) 

respectively. 
Solving a ( z ) from Eq. (6) and substituting it into Eq. (4) , the ICVMLS 

approximation is finally expressed as 

𝑢 ( 𝑧 ) ≈  𝑢 ( 𝑧 ) =  𝑢 
(
𝑧, 𝑧 ∗ 

)||𝑧 ∗ = 𝑧 = �̄� T ( 𝑧 ) 𝐀 

−1 ( 𝑧 ) 𝐁 ( 𝑧 ) 𝐮 = 

𝑁 ∑
𝐼=1 

Φ𝐼 ( 𝑧 ) 𝑢 𝐼 (9) 

where the ICVMLS shape functions are 

Φ𝐼 ( 𝑧 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

𝑚 ∑
𝑗=0 
�̄� 𝑗 ( 𝑧 ) 

[
𝐀 

−1 ( 𝑧 ) 𝐁 ( 𝑧 ) 
]
𝑗𝑘 
, 𝐼 = 𝐼 𝑘 ∈ ∧( 𝑧 ) , 

0 , 𝐼 ∉ ∧( 𝑧 ) , 

𝐼 = 1 , 2 , … , 𝑁 

(10) 

In Eq. (9) , the ICVMLS approximation is shown for the complex value 
function 𝑢 = 𝑢 1 + i 𝑢 2 . When u is a real value function, by setting 𝑢 1 = 𝑢 

and 𝑢 2 = 0 , the ICVMLS approximation of u is [8] 

𝑢 ( 𝑧 ) ≈  𝑢 ( 𝑧 ) = 

𝑁 ∑
𝐼=1 

[
Re Φ𝐼 ( 𝑧 ) 

]
𝑢 
(
𝑧 𝐼 

)
(11) 

where Re ΦI ( z ) denotes the real part of ΦI ( z ). 
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