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a b s t r a c t 

The propulsion of a flapping foil in heading waves has been investigated through the velocity potential theory. 

The trajectory of the flapping foil is prescribed with the combined sinusoidal heave and pitch motions. Boundary 

element method is introduced to solve the boundary value problem and a time stepping scheme is adopted to 

simulate the interaction of the foil and Stokes waves of infinite water-depth. The nonlinear free surface boundary 

conditions are imposed when updating the free surface. The effects of the frequency difference between foil 

motion and waves have been investigated. When the encountered wave frequency equals the flapping frequency, 

hydrodynamic performance of the flapping foil can be enhanced significantly. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Propulsion through bio-inspired flapping foil can be highly efficient. 

Active flapping foils are applicable for the propulsion of ships or un- 

derwater vehicles. When foils are mounted on the bow of a ship, they 

will move with the ship in waves. The foils can improve the sea keep- 

ing performance of the ship and would assist the propulsion [1–3] . The 

foil is known as wavefoil. The progress of the wavefoil for propulsion 

had been reviewed by Rozhdestvensky and Ryzhov [4] and Belibassakis 

and Politis [5] . The hydrodynamics of the wavefoil is affected by the 

free surface, the incident wave and motion of the ship. The propul- 

sive performance of these foils, either passive or active, shall consider 

the cross effects of these factors. Ignoring the disturbance of the ship, 

a two dimensional foil oscillating in wave will be studied in present 

study. 

Flapping foil for propulsion originates from the locomotion of an- 

imals. Considering the flexibility of realistic wings or fins, the mech- 

anism of the propulsion can be very complex. Early work by Lighthill 

[6] and Wu [7,8] reduced the problem to a waving plate and the propul- 

sion force was calculated indirectly through complex theory. After that, 

studies mainly concerned rigid oscillatory foil with harmonic heave and 

pitch motions [9–12] . Ashraf et al. [13] and Xiao and Liao [14] inves- 

tigated the propulsion of a flapping foil through solving Navier–Stokes 

equation. The optimum motion parameters for higher efficiency were in- 

vestigated. As analysed in Anderson et al. [10] and Xu and Wu [12] , the 

propulsive rigid foil in harmonic motion is dominated by the Strouhal 

number St , effective attack angle 𝛼0 , heaving amplitude h 0 and the phase 

difference 𝜀 . Read et al. [15] further revealed that the modified non- 

sinusoidal heave motion, which actually increased the mean effective 
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attack angle in upstroke and downstroke motion at high frequency, in- 

creased the propulsive efficiency significantly. 

The free surface flow has significant effects on the hydrodynamics 

of a foil as the submergence is shallow. For a foil travelling at con- 

stant speed with fixed attack angle, its lifting force would increase or 

decrease significantly when various submergences and Froude number 

are considered [16–20] . The induced surface wave flow would change 

the local flow around the foil and therefore the effective attack angle. 

Zhu et al. [21] investigated the effects of initial quiescent free surface on 

the propulsion of an oscillating foil through boundary element method. 

The thrust and the propulsive efficiency decrease when moderate mo- 

tion amplitudes are considered. 

The oscillating surface wave flow will affect the propulsive perfor- 

mance of the foil. Wu [22] included the effect of the incoming wave, 

but the free surface boundary condition was not satisfied when solving 

the boundary value problem (BVP). Grue et al. [23] studied the propul- 

sion of an oscillating plate in waves through linear theory in frequency 

domain; it was reported that the wave energy could be utilized to pro- 

mote the propulsive efficiency. Filippas and Belibassakis [24] had simu- 

lated the propulsion of flapping foil in linear surface waves; they found 

that the thrust can maximally increase 20% if proper motion parameters 

were adopted. In previous studies, the considered wave-foil interactions 

were in regular waves. Belibassakis and Filippas [2] further investigated 

the coupled motion of a ship hull with semi-active foil in random waves. 

The vertical motion of the foil was dominated by the heave and pitch 

motions of the ship and the rotational motion was actively controlled; 

the ship-foil system produced significant thrust and augmented the ship 

propulsion. If an active foil is utilized for the propulsion of ships or sur- 

face vehicles, the frequency of the flapping foil is not necessarily equal 
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to the encountered wave frequency. As suggested by Anderson et al. 

[10] and Trantafyllou et al. [25] , the efficiency of the propulsive foil 

depends on the Strouhal number and secondarily the heave and pitch 

amplitudes. To achieve higher propulsive efficiency, the frequency of 

an active flapping foil would differ the encountered wave frequency. 

The hydrodynamics of the flapping foil in waves of various wave fre- 

quencies seems to have been ignored. The effects of surface wave flow 

will cause the variation of the instantaneous effective attack angle. The 

performance of flapping foil requires insightful investigations. 

The performance of an active foil in nonlinear waves will be inves- 

tigated in present study. The trajectory of the flapping foil is prescribed 

through harmonic heave and pitch motions. Small to medium effective 

attack angle is considered. Therefore only trailing edge vortex shed- 

ding is included. The fifth order Stokes wave of infinite water-depth is 

adopted as the nonlinear incident wave. The interaction of the incident 

wave and the flapping foil is simulated through time stepping scheme. 

In Section 2 , the motion of the foil, the boundary value problem and 

the incident waves will be described. In Section 3 , the small amplitude 

motion is considered after the numerical code is validated; propulsion 

of larger amplitude oscillatory motion in waves is further investigated. 

The effects of the wave number and flapping frequency are analysed. 

2. Formulations 

2.1. Motions of the foil 

A flapping foil advancing at constant horizontal speed U is consid- 

ered. The submergence, which is measured from the rotational centre to 

the initial quiescent surface, is denoted as H . The trajectory of the flap- 

ping foil is prescribed through the sinusoidal heave and pitch motions, 

we have 

ℎ ( 𝑡 ) = ℎ 0 sin 𝜔𝑡 (1) 

𝜃( 𝑡 ) = 𝜃0 sin ( 𝜔𝑡 + 𝜀 ) (2) 

where h 0 and 𝜃0 are the heave and pitch amplitudes respectively; 𝜔 and 

𝜀 are the circular frequency and phase difference; the positive direction 

of pitch angle 𝜃( t ) is defined as counter clockwise; the rotation centre is 

located at one third of the chord referring to the leading edge. 

The harmonic motion of a foil is determined by the Strouhal number 

𝑆𝑡 = 

𝜔 ℎ 0 
𝜋𝑈 

, heave amplitude h 0 , pitch amplitude 𝜃0 or the nominal ampli- 

tude of effective attack angle 𝛼0 and the phase difference 𝜀 . The phase 

difference 𝜀 = 90° is adopted. We have the effective attack angle and its 

nominal amplitude at the pivot centre 

𝛼( 𝑡 ) = arctan ℎ̇ ( 𝑡 ) 
𝑈 ( 𝑡 ) 

− 𝜃( 𝑡 ) (3) 

𝛼0 = arctan 
𝜔 ℎ 0 
𝑈 

− 𝜃0 (4) 

In the propulsive motion mode, the attack angle is positive during 

upstroke motion and negative during downstroke motion. The average 

attack angle is zero. The maximum effective attack angle appears when 

the foil is at its mean position. 

2.2. Governing equation and boundary conditions 

As shown in Fig. 1 , a foil travelling beneath water waves is consid- 

ered. Its chord length is denoted as C . Two right-handed Cartesian co- 

ordinate systems are defined. One is the space-fixed coordinate system 

O 0 x 0 z 0 with the plane on the initial quiescent water surface and z 0 -axis 

being positive upwards. The other is a translational coordinate system 

o xz , which is moving along with the foil at constant horizontal speed U . 

At the initial time, these two sets of coordinate systems are coincident. 

The relationships between these two coordinate systems are 

𝑥 0 = 𝑥 + 𝑈𝑡, 𝑧 0 = 𝑧 (5) 

Fig. 1. The sketch of a flapping foil in waves. 

The velocity potential 𝜙( x, z, t ) is introduced; it represents the total 

velocity potential due to wave body interactions. The velocity potential 

observed in the space-fixed coordinate system can be also described in 

the translational coordinate system, that is 

𝜙0 ( 𝑥 0 , 𝑧 0 , 𝑡 ) = 𝜙( 𝑥, 𝑧, 𝑡 ) = 𝜙( 𝑥 0 − 𝑈𝑡, 𝑧 0 , 𝑡 ) (6) 

The foil travelling at constant horizontal speed U is equivalent to the 

current flowing at constant horizontal speed U in the opposite direction. 

The relative velocity potential observed in the translational coordinate 

system is introduced 

𝜙r ( 𝑥, 𝑧, 𝑡 ) = 𝜙( 𝑥, 𝑧, 𝑡 ) − 𝑈𝑥 (7) 

where − Ux denotes the contribution of the equivalent current. 

The velocity potential 𝜙0 ( x 0 , z 0 , t ) satisfies the Laplace equation in 

the whole field in the space-fixed coordinate system, we have 

𝜕 2 𝜙0 

𝜕𝑥 2 0 

+ 

𝜕 2 𝜙0 

𝜕𝑧 2 0 

= 0 (8) 

We have dynamic and kinematic free surface boundary conditions 

on the instantaneous free surface S F 

𝜕 𝜙0 
𝜕𝑡 

= − 

1 
2 

[ ( 

𝜕 𝜙0 
𝜕 𝑥 0 

) 2 
+ 

( 

𝜕 𝜙0 
𝜕 𝑧 0 

) 2 
] 

− 𝑔 𝜂0 (9) 

𝜕 𝜂0 
𝜕𝑡 

= 

𝜕 𝜙0 
𝜕 𝑧 0 

− 

𝜕 𝜙0 
𝜕 𝑥 0 

𝜕 𝜂0 
𝜕 𝑥 0 

(10) 

where g represents the acceleration due to gravity, 𝜂0 is the wave ele- 

vation on free surface. 

The body surface boundary condition is satisfied on the exact moving 

foil surface S 0 , we have 

𝜕 𝜙0 
𝜕 𝑛 0 

= 𝐕 0 ⋅ 𝐧 0 = ( 𝑈 − 𝜃̇𝑍) 𝑛 𝑥 + ( ̇ℎ + 𝜃̇𝑋) 𝑛 𝑧 (11) 

where 
⇀

𝑋 = ( 𝑋, 𝑍) = ( 𝑥 − 𝑥 𝑐 , 𝑧 − 𝑧 𝑐 ) , ( x c ,z c ) is the centre of rotational mo- 

tion, and 
⇀
𝑛 = ( 𝑛 𝑥 , 𝑛 𝑧 ) is the inward normal vector of the body surface. 

In the far field, the disturbed wave will propagate to infinity and 

there should be no reflection. Numerically, the disturbed wave will be 

absorbed using damping zone technique and then diminishes on the 

truncated boundary. On the left side surface S L and the right side surface 

S R we have 

𝜕 𝜙0 
𝜕 𝑛 0 

= 

𝜕 𝜙𝐼 

𝜕 𝑛 0 
(12) 

where 𝜙I is the potential of the incident wave which will be described 

in Section 2.3. 

The concerned problem is aiming for deep water. The integral bound- 

ary on the bottom S B is included for the completeness of the integral 

boundary over the fluid domain. It will not affect the numerical results 

as long as the depth is large enough. The boundary condition on S B 
satisfies 

𝜕 𝜙0 
𝜕 𝑛 0 

= 0 (13) 
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