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a b s t r a c t 

In this paper, an enhanced octree polyhedral scaled boundary finite element method (SBFEM) is proposed in 

which arbitrary convex polygon (pentagon, hexagon, heptagon, octagon etc.) can be directly served as boundary 

face elements. The presented method overcomes the existing SBFEM’s limitation that boundary face is strictly 

restricted to be a quadrangle or triangle. The conforming shape functions are constructed using a polygon mean- 

value interpolation scheme for polyhedral face. A highly efficient octree mesh generation technology is introduced 

to accelerate the progress of pre-treatment, wherein the mesh information can be directly used in the enhanced 

SBFEM. The accuracy of the proposed method is first verified using a beam under shear and torsion load. Another 

three more complicated geometries including a nuclear power plant structure, as well as two sculptures named 

Terra-Cotta Warriors and Sioux Falls Church are presented to demonstrate the application and robustness of the 

proposed method. The new method possesses appealing versatility and offers a swift adaptive capacity in mesh 

generation, which can provide a powerful technique for the simulation of complex geometries, rapid-design 

analysis and multi-scale problems. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The finite element method (FEM) is a powerful computational tech- 
nique used in numerical simulation that has been extensively applied 
to structural analysis since it was first proposed. Moreover, a wide va- 
riety of improvements and alterations to this method are continually 
emerging. The three-dimensional finite elements are typically tetrahe- 
drons (four vertices and four faces) and hexahedrons (eight vertices and 
six faces). The hexahedron can degenerate into shapes with fewer ver- 
tices, such as pentahedrons (five or six vertices and five faces), which are 
sufficient for many applications. However, there is a growing need for 
more general polyhedral shapes with increasing geometric complexity 
to include shapes that have an arbitrary number of vertices and faces. 

Polyhedral element shapes can provide more flexibility for mesh- 
ing geometrically complex structures, which will enable a rapid design- 
to-analysis paradigm. Finite volume methods based on polyhedral cells 
have reached a level of maturity in fluid dynamic simulations, as ev- 
idenced by their availability and use in commercial software [1,2] . 
Mimetic finite difference (MFD) methods capable of handling general 
three-dimensional meshes have also been a topic of active research and 
have been successfully applied to diffusion, elasticity, and fluid flow 

problems [3–7] . However, the extension of the FEM to this field has 
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been relatively slow despite the availability of special interpolation func- 
tions. This progress has primarily been slow because these interpolants 
are subject to restrictions on the admissible element geometry (e.g., con- 
vexity and maximum valence count) and can be sensitive to geometric 
degeneracies. More importantly, calculating these functions and their 
gradients are often prohibitively expensive. The numerical evaluation 
of weak form integrals with sufficient accuracy poses yet another chal- 
lenge due to the non-polynomial nature of these functions as well as the 
arbitrary integration domain [8] . 

Polyhedral finite element formulations have only recently been pro- 
posed in the literature [9,10–13] . We highlight several works that have 
aimed to overcome these barriers. In his ground-breaking theoretical 
work that has drawn widespread attention from subsequent researchers, 
Wachspress [14] proposed polygonal rational shape functions for plane 
problems. However, this work was not extended to polyhedrons until 
1996 [15] and was then extended to only polyhedrons with triangu- 
lar faces. Similarly, Wicke et al. [11] developed a formulation for con- 
vex polyhedrons using mean-value coordinates where the faces were 
restricted to triangles. The polyhedral finite elements [10,13,16] were 
developed using the shape functions derived from meshless methods, 
and Idelsohn et al. [10] used non-Sibsonian coordinates that required a 
certain Voronoi construction within an element. To achieve numerical 
integration, the polyhedron was first subdivided into tetrahedrons, and 
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tetrahedral subdivision was performed using the face centroids and the 
centroid of the polyhedron. Then, element integration was performed 
using standard integration rules for tetrahedrons [17] . Milbradt and Pick 
[13] developed a formulation for both convex and non-convex polyhe- 
drons using natural-element coordinates to construct the shape function. 
Ghosh [18] developed the Voronoi-cell FEM using a stress-based finite 
element approach. In this formulation, the shape functions were con- 
structed using a polynomial basis optimised for smoothness. More re- 
cently, researchers have focused on the virtual element method (VEM), 
which has addressed some of the aforementioned challenges encoun- 
tered by finite element schemes [19–22] . 

The scaled boundary finite element method (SBFEM) was developed 
by Wolf and Song in the mid-1990s [23,24] and has been increasingly 
used for numerical simulations of structures. For example, Goswami 
[25] , Hell [26] , and Saputra et al. [27] used SBFEM to conduct three- 
dimension crack analysis. Man et al. [28] used this method to simulate 
plate bending, and Lin et al. [29] conducted a sloshing analysis of liq- 
uid storage tanks. An alternative hydrodynamic pressure method for a 
high concrete-faced rockfill dam has also been proposed [30] . Birk and 
Behnke [31] modelled dynamic soil-structure interactions in layered soil 
using a modified SBFEM. This method was also used to simulate elec- 
trostatic problems [32,33] , short-crested wave interactions [34] and the 
time-domain analyses of the layered soil [35] . Novel consistent analy- 
sis approach for uniform beams [36] , nonlinear analysis application in 
two-dimensional geotechnical structures [37] and error study of West- 
ergaard’s approximation using SBFEM [38] are emerged, too. Discreti- 
sation is conducted only at the boundary surface, and each face can 
be treated as a sub-element in each volume element, thus making the 
SBFEM easy to formulate for a polyhedral element. More recently, Liu 
et al. [39] developed a rapid automatic polyhedral mesh generation and 
scaled boundary finite element analysis. In this research, the octree mesh 
technique was adopted, and the two-dimensional isoparametric element 
was utilised for each face element. However, each face is still restricted 
to being either a triangle or quadrangle, and additional efforts are re- 
quired to manage the hanging nodes, which may exceed the capacity 
of the method to manage general polyhedrons. This method will have 
greater influence if the hanging nodes are free from addressing. 

In 1975, Wachspress [40] developed polygonal finite elements with 
an arbitrary number of sides. Subsequently, Meyer et al. [41] and Floater 
et al. [42] generalised these elements to arbitrarily shaped polygons 
using the concept of barycentric and mean-value coordinates. Voronoi 
diagrams and natural neighbour shape functions were considered to 
develop conforming polygon elements [43] . Recently, an alternative 
method using the maximum entropy approach [44] to formulate polyg- 
onal shape functions was also studied [45,46] . In summary, polygo- 
nal shape functions have reached a level of maturity that provides a 
powerful technique for formulating a general polyhedral element using 
SBFEM. 

Based on previous studies, a more distinct three-dimensional polyhe- 
dral scaled boundary finite element method (PSBFEM3D) is proposed. 
The shape function of the boundary face elements is constructed using 
the mean-value coordinates instead of an isoparametric element. Subse- 
quently, the solution process is identical to that of the SBFEM, which is 
described in detail in Section 3 . The proposed method is easy to formu- 
late and implement in a program. More importantly, the difficulties in 
calculating the shape functions and their gradients are significantly de- 
creased compared with polyhedral FEM. In addition, this method can be 
seamlessly combined with efficient octree meshing, which is more ad- 
vantageous for rapid adaptive modelling. The PSBFEM3D offers appeal- 
ing universality and is efficient for managing a cross-scale or multi-scale 
mesh. This method may have significant potential for use in practical 
applications. 

The remainder of this paper is organised as follows. A brief the- 
oretical derivation of the mean-value shape function is introduced in 
Section 2 . Section 3 describes the scaled boundary polyhedron for- 
mulation for a polyhedral element. The development platform of the 

Fig. 1. Mean-value coordinates. 

proposed algorithm is introduced in Section 4 . The reliability of the 
procedure is validated using four numerical examples in Section 5 . 
Section 6 summarises the major conclusions that can be drawn from 

this study. 

2. Mean-value shape functions on polygons 

The mean-value shape function is a type of polygon function in which 
the interpolant is simpler and computationally attractive. The desirable 
properties for finite element interpolants indicated in reference [43] are 
satisfied, and the proof was presented in that previous study. Here, we 
briefly discuss the formulation of the mean-value shape functions on 
general polygon elements, and the reader can refer to [43] for a more 
detailed description. The linearly precise mean-value coordinate is writ- 
ten as [47] 

𝑁 𝑖 ( 𝐱 ) = 

𝑤 𝑖 ( 𝐱 ) ∑𝑛 

𝑗=1 𝑤 𝑗 ( 𝐱 ) 
(2.1) 

𝑤 𝑖 ( 𝐱) = 

tan ( 𝛼𝑖 −1 ∕2) + tan ( 𝛼𝑖 ∕2) ‖‖𝐱 − 𝐱 𝑖 ‖‖ (2.2) 

tan ( 𝛼𝑖 ∕2) = 

sin 𝛼𝑖 
1 + cos 𝛼𝑖 

(2.3) 

where w i ( x ) is the mean-value weight function, || x-x i || is the Euclidean 
distance between p and p i ( Fig. 1 ), point p is set as the geometric centre, 
and n is the number of vertices. The mean-value shape functions can be 
readily computed by substituting Eqs. (2.3) and ( 2.2 ) into ( 2.1 ). Notably, 
the formulation is also applicable to a non-convex polygon. 

Typically, the mean-value shape functions are derived in the physi- 
cal x -coordinate itself. To improve the SBFEM and to simplify the inte- 
gral, a technique to construct conforming approximations on polygons 
is described using mean-value shape functions. Similar to isoparametric 
elements, the shape function is defined on a canonical element with lo- 
cal coordinates 𝝃≡( 𝜉1 , 𝜉2 ) ∈R 0 . The canonical elements are given for 
a triangle, quadrangle, pentagon and hexagon and are illustrated in 
Fig. 2 . The nodes lie on the same circumcircle in each case, and the 
geometric centre is located in the centre of the circumcircle; hence, all 
vertices of the polygon are natural neighbours for any point in R 0 . The 
vertical coordinates of an n -gon are expressed as (cos2 𝜋/ n , sin2 𝜋/ n ), 
(cos4 𝜋/ n , sin4 𝜋/ n ),…, and (1, 0). Then, the shape function can first 
be defined using the reference coordinate system. Subsequently, each 
arbitrary polygon can be transformed into corresponding canonical ele- 
ments using the isoparametric mapping function N . The mapping for a 
pentagonal element is illustrated in Fig. 3 . 
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