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a b s t r a c t 

In this paper, the numerical simulation of the bed-load sediment transport using Element-Free Galerkin (EFG) 
method is presented. The governing equations of this model include shallow water equations for the hydraulic 
behaviour, Exner equation for morphodynamic variations, and Grass model for solid discharge. The governing 
equations are formulated for the coupled approach. The problem is solved using EFG meshfree method, in which 
the problem domain is represented by a set of arbitrarily distributed nodes; there is no need to use meshes, 
elements, or any other node connectivity information for field variable interpolation. The EFG method is based 
on moving least-squares (MLS) shape functions originated in scattered data fitting. Finally, to assess the ability 
and the efficiency of the EFG method, several benchmark examples on regular and irregular distribution of nodes 
are investigated and the results are compared with those of previously published works. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Sediment transport in rivers has been studied for a long time with 
the aim to determine transporting estimation rates and corresponding 
changes in the topography of the river bed. The common approaches 
for computing sediment transport rates are mainly based on empirical 
relations obtained through the evaluation of field measurements or lab- 
oratory experiments. Because of the high cost of construction, mainte- 
nance, and operation, numerical modelling is being noticed by many 
researchers nowadays. Traditionally, some of the numerical methods 
like finite difference methods (FDM) and finite volume methods (FVM) 
were used to solve complex partial differential equations. These meth- 
ods require the use of meshes or elements for spatial domain where 
the partial differential equations are governed. As mesh generation is a 
time-consuming process, it would be very profitable to introduce meth- 
ods that do not demand prescribed node connectivity information or at 
least reduce the need for such information. As the numerical modelling 
field moved forward, other classes of solution methods were developed. 
Of particular note among these were meshfree methods. 

The main idea of the meshfree method is to establish a system of al- 
gebraic equations for the whole problem domain and then approximate 
the field variable by means of a linear combination of shape functions 
that are built in the absence of predefined mesh generation. In these 
methods, problem domain is described only by dispersed nodes; no in- 
formation about nodes connectivity is required and therefore the mod- 
elling of fracture, large deformation, etc. is considerably simplified [1] . 
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A specific weight function is assigned to each of these nodes with local 
support domain. The shape function for a given node is then built by 
considering the weight functions whose support domain overlaps with 
the weight function of these nodes [2] . 

So far, different models have been proposed to determine the inter- 
action between sediment transport and water flow. To quantify such 
interactions, it is necessary to develop numerical methods that accu- 
rately simulate flow and sediment transport. Generally, the mathemati- 
cal modelling of morphodynamics is divided into two types of equations. 
The nonlinear shallow water equations describe the water flow continu- 
ity and momentum conservation with the assumption of shallow water. 
The Exner equation deals with sediment continuity to describe the bed 
updating. In the literature, different models of solid transport sediment 
flux have been proposed, such as Grass equation, Meyer–Peter & Muller’s 
equation, Van Rijn’s equation, and Nielsen’s equation. These are gener- 
ally acquired by empirical method [3–5] . In all of them except the Grass 
model, the critical shear stress controls the movement of sediment. In 
this paper, Grass model is considered for sediment transport flux. 

Till date, different numerical methods have been used to solve the 
equations of sediment transport. A huge amount of work has been done 
using schemes based on FVMs. FVMs are obtained on the basis of the in- 
tegral form of the conservative laws. They subdivide the spatial domain 
into grid cells and approximate the total integral of conservation laws 
over grid cells. The well-established Roe’s scheme has been adapted to 
sediment transport problems (see e.g. [4,6–12] ). The author of [9] men- 
tions the comparison of implicit time advancing and explicit approach 
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in terms of accuracy and computational time and discretizes the gov- 
erning equations using FVM and modified Roe’s scheme in the second 
order of accuracy in space. Because of the treatment of source term 

in this scheme, it could increase the computational costs and is one of 
the disadvantages of this scheme. Some author have also used essential 
non-oscillatory (ENO) and weighted essential non-oscillatory (WENO) 
schemes to simulate the sediment transport problems [13] , whilst others 
have employed the central weighted essential non-oscillatory (CWENO) 
scheme [14] . Most ENO, WENO, and CWENO schemes have simulated 
the two-dimensional sediment transport problems accurately, but unfor- 
tunately they are computationally still very expensive. The relaxation 
approach has also been applied [15] . In this approach, the nonlinear 
set of equations is transmuted to a semi-linear diagonalizable equa- 
tion with linear characteristics variables. The second order MUSCL-TVD 

method is applied for the convection stage, whilst an implicit–explicit 
Runge–Kutta scheme solves the relaxation stage. The method of char- 
acteristics (MOC) is one of the best-known methods used in the solu- 
tion and analysis of unsteady open channel flow problems [16] . The 
MOC, combined with the FVM and FVC methods, is used to solve the 
sediment transport problems [17] . Some research has been done using 
the finite element method [18,19] . Some authors have applied discon- 
tinuous Galerkin techniques to solve the sediment transport problems 
[18] . Space is discretized in this method using nodal polynomial basis 
functions of arbitrary order on each element of the unstructured compu- 
tational domain. Also, in [19] , the sediment transport equations were 
solved using the nodal discontinuous Galerkin finite element method. 
The unstructured computational domain is discretized by applying nodal 
polynomial basis functions of arbitrary order in space on each element. 

All previously used numerical methods require some nodal connec- 
tivity information, known as mesh in finite element method, volume 
or cell in FVM, and grid in finite difference method. In the present 
work, a numerical model based on meshfree methods is applied for solv- 
ing the sediment transport equations on regular and irregular distribu- 
tion of nodes. The EFG method is a meshfree method advanced by Be- 
lytschko, it is based on MLS approximation [20,21] . The EFG method 
has been widely used to solve numerical problems (see e.g. [22,23] ). 
For instance, the second order of elliptic partial equations was solved 
using this method and the convergent rate was investigated by using 
continuous and discontinuous shape functions [22] . This method only 
requires a set of nodes and a depiction of the boundaries to generate an 
approximation solution. The connectivity between the particular point 
of interest based on selected local nodes and the shape functions are 
constructed using the method without requiring elements. 

This paper is organized as follows. In Section 2 , the governing 
equations of sediment transport are formulated. In Section 3 , the EFG 

method, which uses MLS shape functions to solve the sediment transport 
problem, is described. Thereafter, the numerical result of the test prob- 
lem is presented in Section 4 . In Section 5 , the summarized concluding 
remarks are presented. 

2. Governing equations 

The shallow water equations depict the hydrodynamics part of the 
sediment transport model. The two space dimensions, the shallow wa- 
ter equations (neglecting the wind effects), Coriolis forces, and friction 
losses are presented as follows: 

𝜕 𝑡 ℎ + 𝜕 𝑥 ( ℎ𝑢 ) + 𝜕 𝑦 ( ℎ𝑣 ) = 0 

𝜕 𝑡 ( ℎ𝑢 ) + 𝜕 𝑥 

(
ℎ 𝑢 2 + 

1 
2 
𝑔 ℎ 2 

)
+ 𝜕 𝑦 ( ℎ𝑢𝑣 ) = − 𝑔ℎ 𝜕 𝑥 𝑍 

𝜕 𝑡 ( ℎ𝑣 ) + 𝜕 𝑥 ( ℎ𝑢𝑣 ) + 𝜕 𝑦 

(
ℎ 𝑣 2 + 

1 
2 
𝑔 ℎ 2 

)
= − 𝑔ℎ 𝜕 𝑦 𝑍 

(1) 

Where t is the time, u and v are the depth-averaged velocities in x 
and y directions respectively, h is the height of water, g is the gravita- 
tional acceleration, and Z is the bottom topography. Note that Z is only 
the function of coordinates in shallow water equations, i.e. Z = Z ( x,y ), 

and it is fixed in time. Therefore, when the sediment transport occurs, 
the bottom topography also depends on the time variable. Hence, an ad- 
ditional equation is needed for its evolution. Mathematically describing 
the continuity equation for sediment, the Exner equation is presented as 
follows: 

𝜕 𝑡 ( 𝑍) + 𝜉
[
𝜕 𝑥 ( 𝑄 1 ) + 𝜕 𝑦 ( 𝑄 2 ) 

]
= 0 (2) 

where 𝜉 = 1∕ 1 − 𝑝 . The term (1 − p ) is sometimes called the packing fac- 
tor and p is the sediment porosity which is assumed to be constant. In Eq. 
(2) , Q 1 and Q 2 represent the bed-load sediment transport flux in x and 
y directions respectively. They are evaluated here using Grass model: 

𝑄 1 = 𝐴 𝑔 𝑢 
(
𝑢 2 + 𝑣 2 

) 𝑚 −1 
2 

𝑄 2 = 𝐴 𝑔 𝑣 
(
𝑢 2 + 𝑣 2 

) 𝑚 −1 
2 

(3) 

Where 0 ≤ A g ≤ 1 and 1 ≤ m ≤ 4 are experimental parameters that 
relate to the considered problem. A g takes into account kinematic vis- 
cosity and grain diameter of the sediment and is also directly related to 
the strength of the interaction between the water flow and bed-load. If 
A g = 0, sediments have no movement and we have a solid shallow water 
equation. When A g is near zero, a weak interaction occurs between the 
water flow and sediment transport. When A g approached 1, stronger in- 
teraction is presented. The system of equations can be rewritten in the 
coupled vector form as follows: 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝜕 𝑡 ℎ + 𝜕 𝑥 ( ℎ𝑢 ) + 𝜕 𝑦 ( ℎ𝑣 ) = 0 
𝜕 𝑡 ( ℎ𝑢 ) + 𝜕 𝑥 ( ℎ 𝑢 2 + 

1 
2 𝑔 ℎ 
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2 ) = − 𝑔ℎ 𝜕 𝑦 𝑍 

𝜕 𝑡 ( 𝑍) + 𝜉
[
𝜕 𝑥 ( 𝑄 1 ) + 𝜕 𝑦 ( 𝑄 2 ) 

]
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(4) 

The above system can be written as a non-conservative hyperbolic 
system: 

𝜕 𝑡 ( 𝑊 ) + 𝐴 1 𝜕 𝑥 ( 𝑊 ) + 𝐴 2 𝜕 𝑦 ( 𝑊 ) = 0 (5) 

where 

𝑊 = 
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where W illustrates the vector of conserved variables, A 1 and A 2 are the 
coefficient matrices, q x = hu and q y = hv are the flow discharges in x and 
y directions, respectively. 

3. Numerical formulation 

In this work, the EFG method is used for simulation of the sediment 
transport equations. This section explains the MLS approximation shape 
functions considered for EFG method. After this, the EFG method is de- 
picted for discretizing the governing equations. 

3.1. MLS shape functions 

In the MLS shape functions implemented most frequently in meshless 
methods, the unknown function 𝜙 is interpolated in X 

T = [ x, y ] by the 

109 



Download	English	Version:

https://daneshyari.com/en/article/4965943

Download	Persian	Version:

https://daneshyari.com/article/4965943

Daneshyari.com

https://daneshyari.com/en/article/4965943
https://daneshyari.com/article/4965943
https://daneshyari.com/

