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a b s t r a c t 

As a partition of unity method (PUM), the numerical manifold method (NMM) is capable of constructing global 

approximation by simply multiplying PU function with local approximation. In order to enhance accuracy, high 

order polynomials can be specified as local approximation. This, however, will hinder the engineering application 

of NMM by its ill conditioning of the global stiffness matrix. In this study, an improved NMM (iNMM) without 

extra degree of freedoms (DOFs) is developed. Without the extra DOFs, the resulting global stiffness becomes 

linear independent. In addition, the stresses are continuous at all nodes. Numerical studies show the iNMM’s 

excellent accuracy. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Over the past three decades, the concept of partition of unity (PU) 

approximations has been established and a number of PU-based meth- 

ods [1] were developed for solid mechanics, such as the partition of 

unity method [2–5] , the generalized finite element method [6] , the ex- 

tended finite element method (XFEM) [7,8] , the numerical manifold 

method (NMM) [9,10] , the phantom-node method [11,12] and many 

others [13–16] . 

Since the advent, the NMM has attracted much interest from re- 

searchers in computational solid mechanics as it possesses several ad- 

vantages over the FEM. For example, the local approximation function 

in NMM can be freely chosen so as to obtain higher resolution of the 

boundary value problem. In addition, the mathematical mesh in NMM 

does not have to match the material interface or the fracture face, in- 

dicating that NMM can always employ regular mesh to discretize the 

problem domain. This, however, is nearly impossible for FEM, when 

dealing with problems with complicated geometric boundaries. Accord- 

ing to our experience from isoparametric elements, such as four-node 

isoparametric quadrilateral element (Quad4) and eight-node isopara- 

metric quadrilateral element (Quad8) [17] , regular mesh can generally 

achieve much better accuracy than distorted mesh. Moreover, NMM is 

very suitable for simulating problems with moving boundaries, such as 

crack propagation problems, while in FEM, the mesh has to be cease- 

lessly regenerated so as to match the evolving fracture face. Due to the 

attractive advantages, NMM has been successfully used to model static 

crack propagation problems [18–23] , dynamic crack propagation prob- 
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lems [24] , contact problems [25] seepage problems [26,27] and wave 

propagation problems [28] . 

Within the framework of PU-based method, high-order global ap- 

proximations can be directly constructed in the NMM by simply adopt- 

ing high-order polynomial local approximations. Use of smooth polyno- 

mial local approximations can achieve the following purposes [29,30] : 

( 1 ) perform p -adaptive analysis without the addition of extra nodes; ( 2 ) 

avoid mesh grading yet obtain a same quality of approximation on a uni- 

form mesh; ( 3 ) remove global refinement constraints. However, when 

both the PU function and the local approximations are simultaneously 

taken as high-order polynomials, the resulting global stiffness matrix 

will be “linear dependence ” (LD) and special equation solver is needed, 

because traditional equation solver generally designed for positive def- 

inite equations cannot solve singular equations. Here, the LD problem 

means the global stiffness matrix is still singular even after the basic 

boundary condition to eliminate the rigid body displacement has been 

imposed. 

The LD problem was first observed by Babu š ka and Melenk 

[2,3] when they designed a one-dimensional PUM approximation for 

the one-dimensional Helmholtz equation. To address LD problem, great 

efforts have been made in the past years by various means. An et al. 

[31] proposed an algorithm for predicting the rank deficiency of the 

stiffness matrix by using the topological information inheriting in the 

finite element mesh. Griebel and Schweitzer [32] proposed flat-top PU 

functions to avoid the linear dependence problems. The only problem 

is the complexity involved in the construction of the flat-top PU func- 

tions [29] . Tian et al. [33] carried out numerical experiments among 
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several GFEMs to investigate the LD problem. Based on the numerical 

experiments, they proposed several approaches to eliminate the linear 

dependence problem, such as suppressing the higher-order degrees of 

freedom (DOF) and adjustment of the element geometry. However, as 

discussed in [34] , these approaches [33] cannot ensure the removal of 

the LD problem and are also difficult to be implemented robustly in 

practice. In [34] , Cai et al. developed a PU-based triangular element 

using a dual local approximation scheme by treating boundary and in- 

terior nodes separately. According to their report, the use of dual local 

approximation scheme can effectively remove the LD problem. Based on 

overlapping polyhedral covers generated from Voronoi cells, Riker and 

Holzer [35] proposed a mixed-cell-complex partition of unity method 

(MCCPUM) to eliminate the LD problem. However, the generation of 

mixed-cell-complex is very rather complicated and computationally ex- 

pensive. 

In other front, a family of PU-based “FE-Meshfree ” elements was pro- 

posed in [36–39] which successfully eliminates the LD problem and the 

shape function possesses the desirable delta property. Although a least 

square version of point interpolation method (LSPIM) [36,37] or radial 

point interpolation method (RPIM) [40] , which is time-consuming, is 

used to construct the local approximations of the “FE-Meshfree ” ele- 

ments, extra nodes or DOFs are not needed, because they just use the 

same mesh as in the FEM, and the total DOFs is the same as FEM. Nu- 

merical tests carried out in [36–38] have shown that the “FE-Meshfree ”

elements are computationally more efficient than FEM. If regular mesh 

is adopted, accuracy obtained through “FE-Meshfree ” elements is much 

better than that obtained through FEM. If distorted mesh is adopted, 

FE-Meshfree elements have much better mesh-distortion tolerance than 

FEM. 

Although high-order global approximations can be constructed eas- 

ily in “FE-Meshfree ” elements, the nodal stress is not continuous at 

nodes, and stress smoothing operation is needed in the post process- 

ing stage. To further improve the property of “FE-Meshfree ” elements, 

Yang Zheng et al. [41–48] developed a series of “FE-Meshfree ” elements 

with continuous nodal stress, such as the ‘FE-Meshfree ’ three-node tri- 

angular element with continuous nodal stress using radial-polynomial 

basis functions (Trig3-RPIMcns) [48] . According to their report, Trig3- 

RPIMcns can obtain better accuracy, higher convergence rate and higher 

tolerance to mesh distortion than the three-node triangular elements 

(Trig3) and the four-node quadrilateral element (Quad4) for linear elas- 

tic, free vibration and forced vibration problems by simply using the 

same mesh as in Trig3. Since Trig3-RPIMcns has to deploy conform- 

ing mesh to discretize the problem domain, the time spent in mesh 

generation for problems with complex boundaries is not negligible. If 

crack propagation is involved, the burden of mesh generation is fur- 

ther amplified. This demerit hinders the applications of Trig3-RPIMcns 

for practical problems. Since there is no need for NMM to deploy con- 

forming mesh, the mesh generation should be very convenient. Be- 

sides, NMM can always adopt regular mesh to discretize the prob- 

lem domain, and mesh distortion, which results in poor accuracy for 

FEM, does not exist in NMM. Therefore, developing a method which 

combines the advantages of both the Trig3-RPIMcns and the NMM is 

essential. 

In this study, an improved version of NMM (iNMM), which syner- 

gizes the advantages of both the Trig3-RPIMcns and the numerical man- 

ifold method (NMM), is developed for linear elastic problems. The prop- 

erty and performance of the iNMM will be studied in great detail in the 

rest of this paper. The outline of this paper is as follows: Section 2 briefly 

introduces the numerical manifold method (NMM); Section 3 presents 

the formulation of iNMM and the properties of the iNMM shape func- 

tions are discussed. Section 4 presents the discrete equations for linear 

elastic problems in the context of iNMM; Numerical examples and dis- 

cussions are subsequently presented in Section 5 . Some conclusions are 

drawn in the last section. 

2. Basic concepts of NMM 

The background of NMM has been described in great detail in [49] . 

Therefore, only the basic concepts are introduced in this section. To 

illustrate these concepts, an example shown in Fig. 1 is employed. 

The core and most innovative feature of the NMM is the adoption of 

two cover systems, namely the mathematical cover (MC) and the phys- 

ical cover (PC), from which the nodes and elements are generated. 

The MC is the union of a series of user-defined overlapping small 

domains. Each small domain is called mathematical patch (MP). In 

Fig. 1 , the MC is constructed by regular triangular mesh, and hence 

each MP is the union of several triangles sharing the same node such 

as MP 1 . It is noticed that the MC does not have to match the material 

boundaries, holes or fracture faces of the problem domain, but have to 

cover the problem domain completely. 

The PC is the union of all the physical patches (PPs). The PPs are 

generated by intersecting all the MPs with the physical mesh. Here, the 

physical mesh is the union of all the material interfaces, joints, fractures 

and domain boundaries, which are used to define the unique problem 

domain. From a MP, at least one PP can be generated, such as PP 2 , 

PP 3 , PP 4 , and PP 5 ( Fig. 1 ). It is noticed that each PP corresponds to a 

“NMM node ” (also named as ‘‘generalized node ’’), on which the degree 

of freedoms (DOFs) are defined, such as 𝐺𝑁 

𝑝 

2 in Fig. 1 . In the rest of this 

paper, the ‘‘NMM node ’’ will be simply called ‘‘node ’’ for the purpose of 

description. 

In NMM, the basic units to integrate the weak form of the problem 

are manifold elements. Each manifold element is the common domains 

of neighboring PPs, such as E 1 , which is the common domains of PP 3 , 

PP 4 and PP 5 ( Fig. 1 ). 

3. Formulation for the iNMM 

In order to synergize the advantages of both the Trig3-RPIMcns and 

the numerical manifold method (NMM), an improved version of NMM 

(iNMM) is developed. Formulation of the iNMM will be described in 

great detail in this section. 

As a PU-based method, the global approximation of NMM in a man- 

ifold element is obtained by multiplying the PU function with the local 

approximation, and expressed as 

𝑢 ℎ ( 𝒙 ) = 𝑤 1 ( 𝒙 ) 𝑢 1 ( 𝒙 ) + 𝑤 2 ( 𝒙 ) 𝑢 2 ( 𝒙 ) + 𝑤 3 ( 𝒙 ) 𝑢 3 ( 𝒙 ) (1) 

where w i ( x ) and u i ( x ) are the PU function and the local approximation 

function associated with physical patch i ( PP i ), respectively. 

3.1. PU function of the iNMM 

The area coordinates are used to construct the PU functions of iNMM. 

The transformation of the area coordinates is defined as [50] : 
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in which 

2 𝐴 = det 
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⎤ ⎥ ⎥ ⎦ , 𝐿 1 + 𝐿 2 + 𝐿 3 = 1 . (3) 

Unlike traditional NMM, which uses the FEM shape functions to con- 

struct the PU functions, the PU functions of the iNMM are expressed as 

[48] 
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