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a b s t r a c t 

This paper presents a formulation of the boundary element method (BEM) for the study of heat diffusion and 
advective effect in isotropic and homogeneous media. The proposed formulation has a time independent funda- 
mental solution obtained from the two-dimensional Laplace equation. Consequently, the formulation is called 
D-BEM since it has domain integrals in the basic integral equation. The first order time derivative that appears 
in the integral equations is approximated by a backward finite difference scheme. Homogeneous subregions are 
considered in the analysis in a specific model simulating a nonuniform flow passing by a circular obstacle under 
internal heat generation. Results from numerical models are compared with the available analytical solutions. 
The correlation estimator R 2 is employed to validate the numerical model and to demonstrate the accuracy of 
the proposed formulation. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introdution 

In engineering it is common to apply numerical methods for solv- 
ing complex real problems governed by differential equations. By using 
appropriate models, parametric analyses allow understanding the prob- 
lem under several different conditions by simply changing the model 
parameters. It is a cost effective approach if compared to experimental 
modeling. 

The boundary element method (BEM) is known to be a powerful nu- 
merical technique formulated from integral equations for solving var- 
ious computational mechanics problems [1,2] . It has been used to ad- 
dress an increasing number of problems in solid mechanics [2] , fluid 
dynamics and acoustics [3,4] , electromagnetic imaging [5] , cathodic 
protection [6] , elastodynamics [7] , among others. Also, in many cases, 
coupled to other numerical methods [8–10] . A thorough historical re- 
view was presented by Cheng and Cheng [11] . 

Concerning the topic of this paper, current literature shows numer- 
ous works involving the BEM for the solution of advection and diffu- 
sion problems. Among them, Jesus and Azevedo [8] , Jesus and Pereira 
[12] and Vanzuit [9] . In [8,9] are present solutions for the dynamic 
problem of heat diffusion, adopting an independent fundamental solu- 
tion time marching schemes in time based on finite differences, beyond 
using the Houbolt method in this first work and the Hammer method 
in the second work with the use of cells to approximate the domain in- 
tegrals, and also. In [12] is present a two-dimensional flow analysis in 
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porous media using continuous homogeneous subregions in a stationary 
case based on the Laplace equation. 

In [13] a BEM formulation is presented using time independent fun- 
damental solution for the advection–diffusion steady state analysis. For 
the transient analyses the authors used a time dependent fundamental 
solution. DeSilva et al. [14] proposed solutions for the two dimensional 
advection–diffusion problems with variable velocities, using a time de- 
pendent fundamental solution and cell domain integrations. 

Also with the use of cell integration, Lima Jr. et al. [15] numerically 
analyzed the mechanical behavior of continuous and saturated porous 
media with an implicit BEM formulation, with a time independent fun- 
damental solution. In this work, the authors suggested a fluid structure 
interaction formulation, adopting, a numerical Gauss integration pro- 
cedure on the boundary elements and a semi-analytical scheme for the 
domain cells. Other transient heat diffusion problems have also been 
also analyzed by others [16–18] , with time dependent fundamental so- 
lutions. 

Loeffler and Costalonga [19] used dual reciprocity to solve diffusive–
advective problems, varying the velocity of flow and analyzing the im- 
pact on energy transport on the thermal diffusion. Also using reciprocity, 
Ochiai [20] presented a two-dimensional analysis of unsteady heat dif- 
fusion using a time independent BEM formulation and heat generation. 
In this work the author shows that it is possible to obtain satisfactory 
temperature distributions with the use of low order fundamental solu- 
tions. Guo et al. [21] presented a formulation to solve three-dimensional 

http://dx.doi.org/10.1016/j.enganabound.2017.08.012 
Received 31 January 2017; Received in revised form 16 August 2017; Accepted 16 August 2017 
Available online 1 September 2017 
0955-7997/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.enganabound.2017.08.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enganabound
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2017.08.012&domain=pdf
mailto:pettres@ufpr.br
mailto:alkimin@lactec.org.br
http://dx.doi.org/10.1016/j.enganabound.2017.08.012


R. Pettres, L.A. de Lacerda Engineering Analysis with Boundary Elements 84 (2017) 129–140 

conduction problems with transient heat generation. In their work, the 
time dependence on the problem was temporarily removed from the 
equations by Laplace transform, preserving the boundary integral equa- 
tion and avoiding the domain discretization. The use of reciprocity was 
also observed in the work of Tanaka et al. [22] , which showed a BEM 

approach for two-dimensional conduction problems of transient heat 
transfer in anisotropic media. Their work made use of a time indepen- 
dent fundamental solution for isotropic materials and time marching 
scheme based on finite differences. 

A formulation of an alternative boundary element method based on 
an exponential transformation variable to stabilize diffusion–advection 
problems is presented in [23] , converting the equation of diffusion–
advection into a modified Helmholtz equation. In this paper the authors 
discuss three transformations and differentiate its use for problems dom- 
inated by diffusion and advection. 

Analyses of transient heat conduction problems without domain dis- 
cretization were presented by Sutradhar and Paulino [24] , transforming 
an inhomogeneous problem in a homogeneous diffusion problem with 
the Laplace transform and Galerkin approximations. In this work the 
time dependence is restored by numerical inversion of Laplace transfor- 
mation through Stehfest algorithm [25] . The results obtained with the 
adopted formulation were compared with the solutions obtained from 

finite element simulations. In [26] the method of separation of variables 
and the principle of Duhamel is used to transform the one-dimensional 
problem of diffusion and heat generation in a reverse analysis problem 

based on the BEM. 
Transient heat conduction problems using radial integration in the 

BEM formulation was analyzed by Yu et al. [27] . 
In this analysis the authors solved the problem of heat conduction 

with variable thermal conductivities. 
In all cited studies, the BEM is used to obtain an approximate solution 

of the problem and the coupling with other methods (e.g. finite differ- 
ence) is a common practice. In this work, the numerical study is focused 
on the problem of heat diffusion and advection. Two dimensional BEM 

formulations with time independent fundamental solutions are coupled 
to solve a problem of a circular diffusive heat generating source within 
an advective diffusion domain. Numerical results are compared to ana- 
lytical ones to validate the developed codes. 

2. Mathematical model 

The advective–diffusion equation in a two dimensional isotropic and 
homogeneous domain Ω with boundary Γ is written as [28] 

𝜕𝑢 ( 𝑋, 𝑡 ) 
𝜕𝑡 

= −∇ ∙ [ 𝐯 ( 𝑋 ) 𝑢 ( 𝑋 , 𝑡 ) ] + 

1 
𝑃 𝑒 

∇ 

2 𝑢 ( 𝑋, 𝑡 ) 

𝑋 ∈ Ω, 𝑋 = ( 𝑥, 𝑦 ) (1) 

where Pe is the Peclét number, defined as 

𝑃 𝑒 = | 𝐯 |𝐵 

𝛼
(2) 

in which v is the velocity vector (m/s), B is the characteristic length (m), 
𝛼 represents the coefficient of thermal diffusivity measured in m 

2 /s, u is 
the temperature, X is the field point coordinate and t is the time variable. 

The essential and natural boundary conditions are, respectively: 

𝑢 ( 𝑋, 𝑡 ) = �̂� ( 𝑋, 𝑡 ) 𝑋 ∈ Γ𝑢 (3) 

𝑞 ( 𝑋, 𝑡 ) = 

𝜕 𝑢 ( 𝑋, 𝑡 ) 
𝜕 𝑛 ( 𝑋) 

= 𝑞 ( 𝑋, 𝑡 ) 𝑋 ∈ Γ𝑞 (4) 

and the initial condition at t = t 0 is given by 

𝑢 ( 𝑋, 𝑡 ) = 𝑢 0 ( 𝑋, 𝑡 0 ) 𝑋 ∈ Ω (5) 

3. D-BEM formulation 

3.1. Advection–diffusion equation 

The integral equation of the D-BEM formulation for the advective–
diffusion equation can be written as follows [28] 

𝐶( 𝜉) 𝑢 ( 𝜉, 𝑡 ) = ∫Γ 𝑢 ∗ ( 𝜉, 𝑋) 𝑞( 𝑋, 𝑡 ) 𝑑Γ − ∫Γ 𝑞 ∗ ( 𝜉, 𝑋) 𝑢 ( 𝑋, 𝑡 ) 𝑑Γ

− 𝑃 𝑒 ∫Ω
𝜕𝑢 ( 𝑋, 𝑡 ) 
𝜕𝑡 

𝑢 ∗ ( 𝜉, 𝑋) 𝑑Ω

− 𝑃 𝑒 ∫Ω ∇ ∙ [ 𝐯 ( 𝑋 ) 𝑢 ( 𝑋 , 𝑡 ) ] 𝑢 ∗ ( 𝜉, 𝑋) 𝑑Ω

𝑋 ∈ Ω, 𝑋 = ( 𝑥, 𝑦 ) (6) 

where C ( 𝜉) is a geometric coefficient at the collocation point 𝜉, q is the 
thermal flux and u ∗ and q ∗ are the fundamental solution and its normal 
derivative, respectively. The term v ( X ) represents the time independent 
velocity field. 

The fundamental solution u ∗ ( 𝜉, X ) in the D-BEM formulation is in- 
dependent of the time variable and is given by [29] , 

𝑢 ∗ ( 𝜉, 𝑋) = 

1 
2 𝜋

ln 
(1 
𝑟 

)
(7) 

where r = | X − 𝜉| is the distance between field and collocation points. 
The derivative of the fundamental solution with respect to the nor- 

mal direction to the boundary is given by 

𝑞 ∗ ( 𝜉, 𝑋) = 

𝜕𝑢 ∗ 
𝜕𝑟 

𝑑𝑟 

𝑑𝑛 
= − 

1 
2 𝜋 𝑟 

𝑑𝑟 

𝑑𝑛 
(8) 

where n is the outward direction normal to the boundary. 
The kinetic term, ∇ • [ v ( X ) u ( X, t )], in the domain integral of 

Eq. (6) can be written as 

∇ ∙ [ 𝐯 ( 𝑋 ) 𝑢 ( 𝑋 , 𝑡 ) ] = 𝐯 ( 𝑋) ∙ ∇ 𝑢 ( 𝑋, 𝑡 ) + 𝑢 ( 𝑋, 𝑡 ) ∇ ∙ 𝐯 ( 𝑋) (9) 

The first term in the right side of Eq. (9) represents the thermal gra- 
dient due to transport fluid mass with velocity v and the second term is 
the temperature established by the velocity gradient. Thus, the integral 
containing ∇ • [ v ( X ) u ( X, t )] takes the following form 

∫Ω ∇ ∙ [ 𝐯 ( 𝑋 ) 𝑢 ( 𝑋 , 𝑡 ) ] 𝑢 ∗ ( 𝜉, 𝑋) 𝑑Ω = ∫Ω 𝐯 ( 𝑋) ∙ ∇ 𝑢 ( 𝑋, 𝑡 ) 𝑢 ∗ ( 𝜉, 𝑋) 𝑑Ω

+ ∫Ω 𝑢 ( 𝑋, 𝑡 ) ∇ ∙ 𝐯 ( 𝑋) 𝑢 ∗ ( 𝜉, 𝑋) 𝑑Ω (10) 

For simplicity, the time derivative presented in Eq. (6) is approxi- 
mated by the backward finite difference formula [30] 

𝜕𝑢 ( 𝑋, 𝑡 ) 
𝜕𝑡 

= 

𝑢 ( 𝑋, 𝑡 + Δ𝑡 ) − 𝑢 ( 𝑋, 𝑡 ) 
Δ𝑡 

(11) 

Replacing Eqs. (10) and (11) in Eq. (6) and grouping terms conve- 
niently, one has 

𝐶( 𝜉) 𝑢 ( 𝜉, 𝑡 + Δ𝑡 ) = ∫Γ 𝑢 ∗ ( 𝜉, 𝑋) 𝑞( 𝑋, 𝑡 + Δ𝑡 ) 𝑑 Γ− ∫Γ 𝑞 ∗ ( 𝜉, 𝑋 ) 𝑢 ( 𝑋 , 𝑡 + Δ𝑡 ) 𝑑 Γ

− 𝑃 𝑒 

[ 
∫Ω 𝐯 ( 𝑋 ) ∙ ∇ 𝑢 ( 𝑋 , 𝑡 + Δ𝑡 ) 𝑢 ∗ ( 𝜉, 𝑋) 𝑑Ω

+ ∫Ω 𝑢 ( 𝑋, 𝑡 + Δ𝑡 ) ∇ ∙ 𝐯 ( 𝑋) 𝑢 ∗ ( 𝜉, 𝑋) 𝑑Ω
] 

− 

𝑃 𝑒 

Δ𝑡 

[ 
∫Ω 𝑢 ( 𝑋, 𝑡 + Δ𝑡 ) 𝑢 ∗ ( 𝜉, 𝑋) 𝑑Ω− ∫Ω 𝑢 ( 𝑋, 𝑡 ) 𝑢 ∗ ( 𝜉, 𝑋) 𝑑Ω

] 
𝑋 ∈ Ω, 𝑋 = ( 𝑥, 𝑦 ) (12) 

Eq. (12) can be used recursively for the solution of advective–
diffusion problems, starting with known variables at time t 𝜏 and de- 
termining the unknown variables at time t 𝜏 + 1 . According to [31] , the 
time step, Δt c , can be estimated as 

Δ𝑡 𝑐 ≤ 

𝐿 𝑗 
2 

2 𝛼
(13) 
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