
Engineering Analysis with Boundary Elements 84 (2017) 178–185 

Contents lists available at ScienceDirect 

Engineering Analysis with Boundary Elements 

journal homepage: www.elsevier.com/locate/enganabound 

Galerkin boundary integral formulation for axisymmetric stokes flow 

A. Xue 

a , E. Graciani b , L.J. Gray 

c , ∗ , V. Manti čb , Maria Garzon 

d 

a Oak Ridge High School, Oak Ridge, TN 37830 Present address: Duke University, Durham NC 27708, USA 
b Elasticity and Strength of Materials Group, University of Seville, Camino de los Descubrimientos, Seville 41092, Spain 
c 119 Berwick Drive, Oak Ridge, TN 37830, USA 
d Department of Applied Mathematics, University of Oviedo, Oviedo, Spain 

a r t i c l e i n f o 

Keywords: 

Stokes flow 

Axisymmetry 

Galerkin approximation 

Singular integration 

a b s t r a c t 

A Galerkin boundary integral formulation for 3D axisymmetric Stokes flow is presented. The singular integrals 

are evaluated by splitting the complicated Green ’s function kernels into a singular term that can be integrated 

analytically, plus a term for which Gauss quadrature provides sufficient accuracy. As in a previous axisymmetric 

Laplace implementation, the treatment of the additional on-axis singularity is aided by employing a modified 

Galerkin weight function, and a similar splitting method is then employed to handle this singularity. The target 

application of the Stokes algorithm is to model the breakup of one viscous fluid enclosed inside a second, and 

this two fluid problem can be formulated in terms of a single boundary integral equation along the interface. The 

Galerkin form for this equation is derived herein. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

This paper presents a Galerkin boundary integral formulation for ax- 

isymmetric Stokes flow [1] . The motivation for this work is to study, via 

numerical simulations, the breakup of viscous fluids [2] . Although the 

breakup of inviscid fluids, i.e. , the Rayleigh–Taylor instability for poten- 

tial flow [3,4] , dominates the literature, viscous flow is significant for a 

variety of industrial applications [5] . In particular, viscous flow is im- 

portant in small regions relevant to capillary flow, hemodialysis, blood 

virus removal, and tertiary oil recovery [6,7] . In addition, droplet for- 

mation in viscous fluids is involved in ink-jet printing techniques used 

for the production of integrated circuits, specialized optical lenses, and 

microarrays for DNA analysis [5] . 

Of the two main numerical methods for solving boundary integral 

equations, namely collocation and Galerkin, the latter approximation is 

more involved and computationally slower. It is therefore not surprising 

that, to our knowledge, all previously reported axisymmetric Stokes al- 

gorithms have employed the simpler collocation scheme [1,8–11] . The 

motivation for developing a Galerkin formulation is the past success 

with this technique in the modeling inviscid breakup, and a goal of this 

work is to carry out the corresponding viscous simulations. For poten- 

tial flow, a Galerkin boundary integral analysis coupled with a Level Set 

method [12] was successful in tracking fluid motion up to and beyond 

pinch-off in both single fluid [13–15] and two-fluid systems [16] . Most 

notably, for the two-fluid system, characterized by the ratio of the outer 
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and inner fluid densities 𝐷 = 𝜌𝑒𝑥𝑡 ∕ 𝜌𝑖𝑛𝑡 , the Galerkin approach obtained 

scaling exponents over the entire range 0 < D < ∞ [16] , and the expo- 

nents were in good agreement with the experimental results of Burton 

and Taborek [17] . However, collocation boundary integral approxima- 

tions (coupled with marker particle front tracking) failed for D > 6 [18] : 

the fluid interface exhibited unphysical ‘roll-up instabilities ’ (see Fig. 1 ), 

and there was no scaling. While it is not clear whether the failure was 

due to collocation, the front tracking algorithm, or both, Section 5 will 

derive the Galerkin form for the interface equation that governs the two- 

fluid system. 

Regarding this two fluid system, it is also worth noting that a bound- 

ary integral analysis has several important advantages compared to a 

volume formulation. First, it is clearly simpler to remesh just the fluid 

interface as the fluid domains evolve. Second, the exterior fluid equa- 

tion is posed in an infinite domain, and as demonstrated in Section 5 , 

this much easier to handle with boundary integrals. 

Key to the boundary integral formulation is the axisymmetric Stokes 

(velocity) Green ’s function and the corresponding traction kernel. These 

fundamental solutions have appeared in many forms, and indeed the 

aforementioned collocation papers [1,8–11,19] all have different formu- 

las. Herein the Green ’s function expressions will follow that of Graziani 

[9,10] and Graciani [20,21] . With one major notational change dis- 

cussed below, these two references are basically in agreement. It should 

also be noted that [20,21] is concerned with axisymmetric elasticity; 

however, the Stokes flow equations are obtained by simply setting the 
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Fig. 1. Time snapshot close to pinch-off from a collocation/marker particle simulation of 

two fluid potential flow. For D > 6, D the ratio of the inner and outer fluid densities, the 

computed fluid interface displays an unphysical ‘roll-up instability ’. 

Poisson ratio to 𝜈 = 0 . 5 , the shear modulus equal to the viscosity, and 

identifying the displacements as the fluid velocities. 

As with the Laplace equation, the axisymmetric Stokes Green ’s func- 

tions involve complete elliptic integrals of the first and second kind and 

therefore include logarithmic singular terms. In the Laplace implemen- 

tation [22] , the Green ’s function expressions were simple enough that 

the entire logarithm singularity 

∫
1 

0 
𝑓 ( 𝑡 ) log ( 𝑡 )d 𝑡 (1) 

could be handled with a special Gauss quadrature technique. While this 

approach would be possible for the Stokes flow problem, the kernel func- 

tions are sufficiently complicated that this formulation would be quite 

cumbersome, and, moreover, would likely lead to a very inefficient cal- 

culation. As discussed in Section 3 , the approach adopted herein is to 

split the singular integrals: the most singular terms, namely log ( t ) and 

t log ( t ) (at 𝑡 = 0 ) are integrated analytically, while remaining powers 

t k log ( t ), k ≥ 2 can be integrated numerically with sufficient accuracy. 

The somewhat extensive algebra involved in achieving this decomposi- 

tion can be handled with symbolic computation, e.g. , Maple. 

2. Galerkin boundary integral equation 

The conversion of the three-dimensional Stokes equations for an in- 

compressible viscous fluid into an axisymmetric boundary integral equa- 

tion can be found in many places, e.g. , [1,8,9] . With u ( Q ) and 𝝉( Q ) the 

surface velocity and traction, this integral equation can be written in 

the form 

( ̂𝑟 , ̂𝑧 ) ≡ ∫Γ 𝑟 
(
 ( 𝑄, 𝑃 ) 𝒖 ( 𝑄 ) −  ( 𝑄, 𝑃 ) 𝝉( 𝑄 ) 

)
d Γ𝑄 = 0 , (2) 

and formulas for the Green ’s function kernels  and  are given in 

Section 2.1 . Here 𝑄 = ( 𝑟, 𝑧 ) , 𝑃 = ( ̂𝑟 , ̂𝑧 ) are boundary points, and it is as- 

sumed that the  singular integral is defined as a limit from outside the 

domain [22] . This boundary limit process replaces the commonly used 

Cauchy Principal Value, and automatically incorporates the ‘free term ’

that commonly appears in the boundary integral statement. Finally, em- 

ploying a cylindrical coordinate system { r, 𝜃, z }, with z the symmetry 

axis, the problem domain reduces to a 2 D contour in the { r, z } plane, 

see Fig. 2 . 

Following [22] , the Galerkin formulation of Eq. (2) is 

∫Γ �̂� ̂𝜓 𝑘 ( ̂𝑟 , ̂𝑧 ) ( ̂𝑟 , ̂𝑧 )dΓ𝑃 = 0 . (3) 

Fig. 2. Illustration of a 2 D geometry for a 3 D axisymmetric boundary integral calculation. 

The two marked elements depict the adjacent singular case for a Galerkin approximation, 

while the axis points 𝑟 = 0 are highlighted to note the axis singularity. The normal vector 

shown is the exterior normal for the interior fluid. 

Here the standard Galerkin weight function �̂� 𝑘 ( ̂𝑟 , ̂𝑧 ) is comprised of the 

(usually two) element shape functions (defined below) that are nonzero 

at the boundary node P k . The extra factor of ̂𝑟 restores symmetry, as ̂𝑟 𝑟  

is symmetric (and a Symmetric Galerkin formulation would be possible), 

but the key advantage of including this factor is that �̂� = 0 on the sym- 

metry axis. There is an additional singularity when 𝑄 = 𝑃 is on the axis, 

and this causes some difficulty for collocation approximations [20,21] . 

As will be discussed in Section 3.3.3 , with Galerkin and the modified 

weight function, this singularity can be handled in a straightforward 

manner. 

Herein Eq. (3) will be approximated using standard linear interpo- 

lation of the boundary and boundary functions. The two-dimensional 

linear shape functions are 

𝜓 1 ( 𝑡 ) = 1 − 𝑡 

𝜓 2 ( 𝑡 ) = 𝑡. (4) 

t ∈ [0, 1], while the geometry and function interpolations on an element 

with nodes P 1 and P 2 are 

𝑃 ( 𝑡 ) = 𝜓 1 ( 𝑡 ) 𝑃 1 + 𝜓 2 ( 𝑡 ) 𝑃 2 
𝒖 ( 𝑃 ( 𝑡 )) = 𝜓 1 ( 𝑡 ) 𝒖 ( 𝑃 1 ) + 𝜓 2 ( 𝑡 ) 𝒖 ( 𝑃 2 ) 

𝝉( 𝑃 ( 𝑡 )) = 𝜓 1 ( 𝑡 ) 𝝉( 𝑃 1 ) + 𝜓 2 ( 𝑡 ) 𝝉( 𝑃 2 ) . (5) 

2.1. Green ’s functions 

As noted in the Introduction, a variety of formulas and notations 

have been employed for the Green ’s function kernels. We mainly follow 
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