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a b s t r a c t 

A Boundary Element Method (BEM) is derived for obtaining solutions to a class of elliptic boundary value prob- 

lems (BVPs) of functionally graded media (FGM). Some particular examples are considered to illustrate the ap- 

plication of the BEM. 
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1. Introduction 

Whereas the BEM provides an effective numerical procedure for the 

solution of BVPs for homogeneous media the same is not generally true 

for inhomogeneous media. In the case of the inhomogeneous media, the 

material is assumed to be a functionally graded material, i.e., the mate- 

rial properties vary spatially according to known smooth functions. BVPs 

for such media have governing equations with variable coefficients. A 

BEM for 2D diffusion-convection problems in homogeneous anisotropic 

media has been recently considered by Haddade, Salam, Khaeruddin 

and Azis in [17] . In recent years some progress toward finding numer- 

ical solutions to BVPs for FGM by using BEM has been made. Clements 

[2] , Cheng [4,5] , Rangogni [6] , Shaw [7] , Gipson et al. [8] , Ang et al. 

[9] , and Clements and Azis [10] considered the case for isotropic FGM. 

In the case of anisotropic FGM there are few published studies. BVPs 

which are relevant for certain classes of problems for anisotropic FGM 

have been considered by Azis and Clements [11] , Azis et al. [12] , Azis 

and Clements [13] , Azis and Clements [14,15] . An elliptic equation 

which is also relevant for a certain class of problems for anisotropic 

FGM has been considered by Clements and Rogers [1] . They obtained 

a boundary integral equation for the case when the coefficients in the 

equation depend on one spatial variable only. Specifically the equation 

considered by Clements and Rogers [1] takes the form 

𝜕 

𝜕𝑥 𝑖 

[ 
𝜆𝑖𝑗 ( 𝑥 2 ) 

𝜕𝜙( 𝑥 1 , 𝑥 2 ) 
𝜕𝑥 𝑗 

] 
= 0 
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where the coefficients 𝜆ij depend on x 2 only and the repeated summation 

convention (summing from 1 to 2) is employed. 

This paper is concerned with obtaining boundary integral equations 

for the solution of BVPs governed by equations of the form 

𝜕 

𝜕𝑥 𝑖 

[ 
𝜆𝑖𝑗 ( 𝑥 1 , 𝑥 2 ) 

𝜕𝜙( 𝑥 1 , 𝑥 2 ) 
𝜕𝑥 𝑗 

] 
= 0 (1) 

Equations of this type govern the behavior of a wide class of BVPs of 

both isotropic and anisotropic FGM. Antiplane strain in elastostatics and 

plane thermostatics for anisotropic FGM are two areas for which the 

governing equation is of the type (1) . 

Several techniques will be considered for obtaining boundary inte- 

gral equations for the solution of (1) . For each technique it is necessary 

to place some constraint on the class of coefficients 𝜆ij for which the so- 

lution obtained is valid. Some numerical examples are considered to il- 

lustrate the application of the boundary integral equations. The analysis 

of this paper is purely formal; the main aim being to construct effective 

BEMs for classes of equations which fall within the type (1) . 

2. The boundary value problem 

Referred to a Cartesian frame Ox 1 x 2 a solution to (1) is sought which 

is valid in a region Ω in R 

2 with boundary 𝜕Ω which consists of a finite 

number of piecewise smooth closed curves. On 𝜕Ω1 the dependent vari- 

able 𝜙( x ) 
(
𝐱 = ( 𝑥 1 , 𝑥 2 ) 

)
is specified and on 𝜕Ω2 

𝑃 ( 𝐱) = 𝜆𝑖𝑗 
(
𝜕 𝜙∕ 𝜕 𝑥 𝑗 

)
𝑛 𝑖 (2) 
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is specified where 𝜕Ω = 𝜕Ω1 ∪ 𝜕Ω2 and 𝐧 = ( 𝑛 1 , 𝑛 2 ) denotes the outward 

pointing normal to 𝜕Ω. 

For all points in Ω the matrix of coefficients [ 𝜆ij ] is a real symmet- 

ric positive definite matrix so that throughout Ω Eq. (1) is a second 

order elliptic partial differential equation. Further, the coefficients 𝜆ij 

are required to be twice differentiable functions of the two independent 

variables x 1 and x 2 . 

The method of solution will be to obtain boundary integral equations 

from which numerical values of the dependent variables 𝜙 and P may 

be obtained for all points in Ω. The analysis here is specially relevant 

to an anisotropic medium but it equally applies to isotropic media. For 

isotropy, the coefficients in (1) take the form 𝜆11 = 𝜆22 and 𝜆12 = 0 and 

use of these equations in the following analysis immediately yields the 

corresponding results for an isotropic medium. 

3. Reduction to a constant coefficient equation 

The coefficients 𝜆ij are required to take the form 

𝜆𝑖𝑗 ( 𝐱) = 𝜆
(0) 
𝑖𝑗 
𝑔( 𝐱) (3) 

where the 𝜆
(0) 
𝑖𝑗 

are constants and g is a differentiable function of x. Use 

of (3) in (1) yields 

𝜆
(0) 
𝑖𝑗 

𝜕 

𝜕𝑥 𝑖 

( 

𝑔 
𝜕𝜙

𝜕𝑥 𝑗 

) 

= 0 (4) 

Let 

𝜓( 𝐱) = 𝑔 1∕2 ( 𝐱) 𝜙( 𝐱) (5) 

so that (4) may be written in the form 

𝜆
(0) 
𝑖𝑗 

𝜕 

𝜕𝑥 𝑖 

[ 

𝑔 
𝜕 
(
𝑔 −1∕2 𝜓 

)
𝜕𝑥 𝑗 

] 

= 0 

That is 

𝜆
(0) 
𝑖𝑗 

[ ( 

1 
4 
𝑔 −3∕2 

𝜕𝑔 

𝜕𝑥 𝑖 

𝜕𝑔 

𝜕𝑥 𝑗 
− 

1 
2 
𝑔 −1∕2 

𝜕 2 𝑔 

𝜕 𝑥 𝑖 𝜕 𝑥 𝑗 

) 

𝜓 + 𝑔 1∕2 
𝜕 2 𝜓 

𝜕 𝑥 𝑖 𝜕 𝑥 𝑗 

] 
= 0 (6) 

Use of the identity 

𝜕 2 𝑔 1∕2 

𝜕 𝑥 𝑖 𝜕 𝑥 𝑗 
= − 

1 
4 
𝑔 −3∕2 

𝜕𝑔 

𝜕𝑥 𝑖 

𝜕𝑔 

𝜕𝑥 𝑗 
+ 

1 
2 
𝑔 −1∕2 

𝜕 2 𝑔 

𝜕 𝑥 𝑖 𝜕 𝑥 𝑗 

permits (6) to be written in the form 

𝑔 1∕2 𝜆(0) 
𝑖𝑗 

𝜕 2 𝜓 

𝜕 𝑥 𝑖 𝜕 𝑥 𝑗 
− 𝜓𝜆

(0) 
𝑖𝑗 

𝜕 2 𝑔 1∕2 

𝜕 𝑥 𝑖 𝜕 𝑥 𝑗 
= 0 

It follows that if g is such that 

𝜆
(0) 
𝑖𝑗 

𝜕 2 𝑔 1∕2 

𝜕 𝑥 𝑖 𝜕 𝑥 𝑗 
+ 𝑘𝑔 1∕2 = 0 (7) 

then the transformation (5) carries the variable coefficients Eq. (4) to 

the constant coefficients equation 

𝜆
(0) 
𝑖𝑗 

𝜕 2 𝜓 

𝜕 𝑥 𝑖 𝜕 𝑥 𝑗 
+ 𝑘𝜓 = 0 (8) 

where k is a constant. 

Also, substitution of (3) and (5) into (2) gives 

𝑃 = − 𝑃 [ 𝑔] 𝜓 + 𝑃 [ 𝜓] 𝑔 1∕2 (9) 

where 

𝑃 [ 𝑔] ( 𝐱) = 𝜆
(0) 
𝑖𝑗 

𝜕 𝑔 1∕2 

𝜕𝑥 𝑗 
𝑛 𝑖 𝑃 ( 𝐱) = 𝜆

(0) 
𝑖𝑗 

𝜕𝜓 

𝜕𝑥 𝑗 
𝑛 𝑖 

A boundary integral equation for the solution of (8) is given in 

Clements [3] in the form 

𝜂( 𝐱 0 ) 𝜓( 𝐱 0 ) = ∫𝜕Ω
[
Γ( 𝐱, 𝐱 0 ) 𝜓( 𝐱) − Φ( 𝐱, 𝐱 0 ) 𝑃 [ 𝜓] ( 𝐱) 

]
𝑑𝑠 ( 𝐱) (10) 

where 𝐱 0 = ( 𝑎, 𝑏 ) , 𝜂 = 0 if ( a, b ) ∉Ω∪ 𝜕Ω, 𝜂 = 1 if ( a, b ) ∈Ω, 𝜂 = 

1 
2 if 

( a, b ) ∈ 𝜕 Ω and 𝜕 Ω has a continuously turning tangent at ( a, b ). 

The so called fundamental solution Φ in (10) is any solution of the 

equation 

𝜆
(0) 
𝑖𝑗 

𝜕 2 Φ
𝜕 𝑥 𝑖 𝜕 𝑥 𝑗 

+ 𝑘 Φ = 𝛿( 𝐱 − 𝐱 0 ) 

and the Γ is given by 

Γ( 𝐱, 𝐱 0 ) = 𝜆
(0) 
𝑖𝑗 

𝜕Φ( 𝐱, 𝐱 0 ) 
𝜕𝑥 𝑗 

𝑛 𝑖 

where 𝛿 is the Dirac delta function. For two-dimensional problems Φ
and Γ are given by 

Φ( 𝐱, 𝐱 0 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝐾 

2 𝜋 ln 𝑅 if 𝑘 = 0 
𝚤𝐾 

4 𝐻 

(2) 
0 ( 𝜔𝑅 ) if 𝑘 > 0 

− 𝐾 
2 𝜋 𝐾 0 ( 𝜔𝑅 ) if 𝑘 < 0 

Γ( 𝐱, 𝐱 0 ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝐾 

2 𝜋
1 
𝑅 
𝜆
(0) 
𝑖𝑗 

𝜕𝑅 

𝜕𝑥 𝑗 
𝑛 𝑖 if 𝑘 = 0 

− 𝚤𝐾𝜔 
4 𝐻 

(2) 
1 ( 𝜔𝑅 ) 𝜆(0) 

𝑖𝑗 
𝜕𝑅 

𝜕𝑥 𝑗 
𝑛 𝑖 if 𝑘 > 0 

𝐾𝜔 

2 𝜋 𝐾 1 ( 𝜔𝑅 ) 𝜆(0) 
𝑖𝑗 

𝜕𝑅 

𝜕𝑥 𝑗 
𝑛 𝑖 if 𝑘 < 0 

(11) 

where 

𝐾 = 𝜏∕ 𝜁

𝜔 = 

√|𝑘 |∕ 𝜁
𝜁 = [ 𝜆(0) 11 + 𝜆

(0) 
12 ( 𝜏 + 𝜏) + 𝜆

(0) 
22 𝜏𝜏]∕2 

𝑅 = 

√ 

( ̇𝑥 1 − 𝑎̇ ) 2 + ( ̇𝑥 2 − 𝑏̇ ) 2 

𝑥̇ 1 = 𝑥 1 + 𝜏̇𝑥 2 

𝑎̇ = 𝑎 + 𝜏̇𝑏 

𝑥̇ 2 = 𝜏𝑥 2 

𝑏̇ = 𝜏𝑏 

where 𝜏̇ and 𝜏 are respectively the real and the positive imaginary parts 

of the complex root 𝜏 of the quadratic 

𝜆
(0) 
11 + 2 𝜆(0) 12 𝜏 + 𝜆

(0) 
22 𝜏

2 = 0 

and 𝐻 

(2) 
0 , 𝐻 

(2) 
1 denote the Hankel function of second kind and order zero 

and order one respectively. K 0 , K 1 denote the modified Bessel function 

of order zero and order one respectively, ı represents the square root 

of minus one and the bar denotes the complex conjugate. A technique 

for finding the fundamental solution Φ in Eq. (11) may be found in Azis 

[16] . 

The derivatives 𝜕 R / 𝜕 x j needed for the calculation of the Γ in (11) are 

given by 

𝜕𝑅 

𝜕𝑥 1 
= 

1 
𝑅 

( ̇𝑥 1 − 𝑎̇ ) 

𝜕𝑅 

𝜕𝑥 2 
= 𝜏̇

[ 1 
𝑅 

( ̇𝑥 1 − 𝑎̇ ) 
]
+ 𝜏

[ 1 
𝑅 

( ̇𝑥 2 − 𝑏̇ ) 
]

Use of (5) and (9) in (10) yields 

𝜂( 𝐱 0 ) 𝑔 1∕2 ( 𝐱 0 ) 𝜙( 𝐱 0 ) = ∫𝜕Ω
{[
𝑔 1∕2 ( 𝐱 ) Γ( 𝐱 , 𝐱 0 ) − 𝑃 [ 𝑔] ( 𝐱 ) Φ( 𝐱 , 𝐱 0 ) 

]
𝜙( 𝐱) 

− 

[
𝑔 −1∕2 ( 𝐱 ) Φ( 𝐱 , 𝐱 0 ) 

]
𝑃 ( 𝐱) 

}
𝑑𝑠 ( 𝐱) 

This equation provides a boundary integral equation for determining 𝜙

and P at all points of Ω. 

The analysis of the section requires that the coefficients 𝜆ij are of the 

form (3) with g satisfying (7) . This condition on g allows for consider- 

able choice in the coefficients. For example, when 𝑘 = 0 , g can assume a 

number of multiparameter forms with the parameters being employed 
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