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We present in this paper comparisons on the performances among five typical radial basis functions methods, 

namely radial basis collocation method (RBCM), radial basis Galerkin method (RBGM), compactly supported 

radial basis collocation method (CSRBCM), compactly supported radial basis Galerkin method (CSRBGM), and 

finite subdomain radial basis collocation method (FSRBCM), for solving problems arising from engineering indus- 

tries and applied sciences. Numerical comparison results demonstrate that the RBCM and FSRBCM possess high 

accuracy and superior convergence rates in which the FSRBCM particularly attains higher accuracy for problems 

with large gradients. The FSRBCM, CSRBCM and RBCM are computationally efficient while the CSRBCM, CSR- 

BGM and FSRBCM can greatly improve the ill-conditioning of the resultant matrix. In conclusion, its advantages 

on high accuracy; exponential convergence; well-conditioning; and effective computation make the FSRBCM a 

first-choice among the five radial basis functions methods. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the last decades, the development of meshfree methods (meshless 
methods) establishes the prominence in computational mechanics due 
to their distinct advantages on eliminating the need of element connec- 
tivity for input data required in most conventional mesh based methods 
and greatly cutting down the modeling cost as mesh generation is time- 
consuming and labor intensive. Overviews of general meshfree methods 
and their performances in engineering applications can be found in [1–
11] . Generally, there are two typical patterns for the Meshfree formula- 
tions: weak form Galerkin method [1] –[5] and strong form collocation 
method [8] –[11] . For the approximation, a broad variety of functions 
can be employed as the interpolation function. In addition to polyno- 
mial, spline functions etc., particularly, we pay attention to radial basis 
functions (RBFs). 

A geophysicist Hardy [12] , [13] was the first to introduce Multi- 
quadric (MQ) RBFs for the scattered data interpolation in the early 
1970s, which were proved to be the best interpolation functions in more 
than thirty functions [14] . Investigation of the existence and uniqueness 
of MQ interpolants provided the theoretical justification for the success 
of MQs [15] , [16] . Further, MQ interpolation error was reported to con- 
verge at exponential rate [16] , [17] . Polyharmonic splines [18] are also 
powerful functions for data interpolation that have a general algebraic 
convergence [19] , [20] , in which a special class in even dimension is 
called thin-plate spline (TPS) [21] , [22] . Duchon [22] explored the 
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existence and uniqueness of the TPS interpolation and introduced a 
family of semi-norms to show its convergence. Another popular RBF is 
Gaussian which was first proposed by a geophysicist Krige [23] for the 
data interpolation and further developed by Matheron [24] . Wendland 
[25] refined the error bound for Gaussian which was known for spectral 
convergence as MQs. An overview of the local error estimates for the 
commonly used RBFs interpolation of scattered date can refer to Wu 
and Schaback [26] . Other RBFs without popularity include Sobolev 
splines [27] , Markoff function [23] etc. Some summary work of using 
RBFs for the data interpolation can be found in [28] , [29] . 

The great success of introducing RBFs to solve partial differential 
equations (PDEs) brings them in many engineering applications. This 
concept was initiated by Kansa [9,30] using MQs associated with col- 
location method to solve parabolic, hyperbolic and elliptic equations, 
and its theoretical foundation was presented by Franke and Schaback 
[31] . Following Kansa’s method, Cecil et al. [32] constructed a numeri- 
cal scheme for Hamilton–Jacobi equations in arbitrary dimensions. Uti- 
lizing random collocation points with RBFs approximation was devel- 
oped by Zerroukat et al. [33] for the heat transfer problem. RBFs with 
collocation also perform well in solving the time dependent problems 
[34–37] , singularity problems [38] , [39] , composite material problems 
[40] , [41] , inverse problems [42] , and many other applications [43–48] . 
A summary can refer to Fornberg and Flyer [49] . Cheng et al. [50] estab- 
lished an exponential error estimate of the collocation solution adopting 
the global MQs and Gaussian for the PDEs. Wendland [51] combined 
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Galerkin method with global and local RBFs, and derived error esti- 
mates of this method to solve PDEs, which led to the same error bounds 
in the energy norm as the classical finite element method (FEM). An- 
other popular RBF method formulated in Galerkin weak form is radial 
point interpolation method [52] , [53] whose shape function has delta 
function property. 

Conventional RBFs are generally globally supported and the result- 
ing matrices are poorly conditioned. One usually tries to remedy these 
conundrums by fine tuning of the shape parameter, domain partition 
or preconditioning, and localization etc. Decreasing shape parameter 
improves the ill-conditioning quite easily, but also brings down the ac- 
curacy. Volokh and Vilney [54] came up with a truncated singular value 
decomposition (TSVD) to transform a very ill-conditioned RBF asymmet- 
ric collocation system into a well-conditioned reduced system, which 
worked effectively as a preconditioner [55] , [56] . Condition number can 
also be greatly reduced by the domain decomposition [58] , [59] . Ling 
and Hon [57] formulated an affine space decomposition scheme which 
was particularly pleasant as it is also stable for very large complex sys- 
tems of PDEs. Moreover, Chen, Wang and their coworkers [39,60] , [61] 
proposed a subdomain radial basis collocation method which could not 
only well improve the ill-condition of the resultant matrix by construct- 
ing a sparse matrix but also prevent the iterations between subdomains 
which was unavoidable in domain decomposition methods. 

Another well-used technique for alleviating the ill-conditioning of 
the interpolation matrix is to localize the global RBFs. Schaback and 
Wendland [62] introduced the first instance of such functions and fur- 
ther developments were provided by Wu [63] , [64] who created numer- 
ous piecewise polynomial compactly supported radial basis functions 
(CSRBFs). Wendland [65] constructed more positive definite and com- 
pactly supported radial functions which consisted of a univariate poly- 
nomial within their support. These radial functions are impressive by 
their simple forms. A localized RBF enhanced by reproducing kernel was 
proposed by Chen et al. [66] within collocation method which enjoyed 
the exponential convergence but introduced more degrees of freedom. 
Other localized RBFs can be found in [67] –[69] . Wendland [70] investi- 
gated the error estimate of the interpolation by CSRBFs, which showed 
that the convergence rate of the interplant to the prescribed target func- 
tion was related to the smoothness of the approximating localized RBFs. 

This article is to contrast five representative RBFs methods: RBFs as- 
sociated with collocation method, called radial basis collocation method 
(RBCM) [ [9] , [10] ]; RBFs associated with Galerkin method, called radial 
basis Galerkin method (RBGM) [51] ; CSRBFs in conjunction with col- 
location method, termed compactly supported radial basis collocation 
method (CSRBCM) [31] ; CSRBFs in conjunction with Galerkin method, 
termed compactly supported radial basis Galerkin method (CSRBGM) 
[77] ; and finite subdomain radial basis collocation method (FSRBCM) 
employing RBFs with sundomain collocation [61] . Besides, RBFs are also 
prevalent approximation functions within many other methods, such as 
boundary knot method [71] , MLPG method [72] and finite difference 
method [73] etc. The paper is organized as follows. In Section 2 , we 
present an overview of global RBFs and CSRBFs. In Section 3 , the RBFs 
interpolation and their error estimates are described. Five archetypal 
RBFs methods for interpolation and solving PDEs and the correspond- 
ing error estimates are investigated in Section 4 . Numerical solutions 
of these five methods are compared in Section 5 and the concluding 
remarks are followed in Section 6 . 

2. Radial basis functions 

2.1. Global radial basis functions 

Multivariate functions which can be expressed as univariate func- 
tions of the Euclidean norm ‖·‖ are call radial functions. RBFs are a spe- 
cial class of functions which can be efficiently evaluated and they are 
positive definite or conditionally positive definite. Their characteristic 

is that the response only depends on the distance from a central point 
and they are globally nonlocal functions. 

A typical RBF is MQ RBF proposed by Hardy [12] , [13] expressed as 

𝜙( 𝑟 ) = 

(
𝑟 2 + 𝑐 2 

)𝑛 − 3 2 , 𝑛 = 1 , 2 , 3 , ... (1) 

where r = ‖x − x I ‖( I = 1, 2, …, N s ) denotes the radial distance from 

the center, 𝐱 𝐼 = ( 𝑥 1 𝐼 𝑥 2 𝐼 𝑥 3 𝐼 ) is the source point of RBF and N s is 
the number of source point. c is the shape parameter which controls the 
intensity of the functions, and it has profound influence on the solution 
accuracy and convergence of the RBFs approximation. Larger c yields 
flatter shape function which is insensitive to the difference in the radial 
distance and leads to higher accuracy. However, at the same time, the 
resulting matrix becomes more ill-conditioned. Therefore, an optimum 

c exists for a solution by balancing the approximation accuracy and ill- 
condition of the matrix. When n = 1, MQ monotonically decreases with 
distance from the center and increases for otherwise n . The function is 
called reciprocal MQ (or inverse MQ) when n = 1, linear MQ when 
n = 2, cubic MQ when n = 3, and so forth. MQs are of special in- 
terest because they are superior interpolation functions that cannot be 
matched by other functions [14] and have spectral convergence prop- 
erty [16] which will be described hereinafter. 

Gaussian RBF [23] decreases with distance from the center mono- 
tonically as inverse MQ, which reads 

𝜙( 𝑟 ) = exp 
( 

− 

𝑟 2 

𝑐 2 

) 

(2) 

Gaussian RBF is popular because it is more local in which the re- 
sponse is only vital in a neighborhood near the center than MQs that 
have a global response for such kind of problems with locality prop- 
erty. Nevertheless, similar behavior of c and convergence property of 
Gaussian RBF can be detected as that of inverse MQ. 

Polyharmonic splines are another class of representative RBFs de- 
scribed as follows 

𝜙( 𝑟 ) = 

{ 

𝑟 2 𝑘 − 𝑑 log 𝑟, if 𝑑 is even 
𝑟 2 𝑘 − 𝑑 , if 𝑑 is odd , 𝑘 > 

𝑑 

2 
(3) 

where 𝑘 ∈ ℕ is any natural number and d is the dimension of the space. 
Especially, when 𝜙( r ) = r the function is called multiconic, when 𝜙( r ) 
= r 3 it’s called pseudocubic or cubic [22] , and when 𝜙( r ) = r n log r , it’s 
also entitled logarithmic. As the degree k is increased, the shape function 
becomes flatter and better accuracy can be attained. Particularly, when 
2 k − d = 2, this special polyharmonic spline in even space is called Thin 
plate splines [21] , [22] 

𝜙( 𝑟 ) = 𝑟 2 log 𝑟 (4) 

TPS is another RBF in common use because it’s a great interpolation 
function next to MQs [14] . 

2.2. Compactly supported radial basis functions 

Since the RBFs mentioned above are global, the corresponding ma- 
trix is a full matrix, and the evaluation demands the whole set of sum- 
mands. To achieve a sparse matrix, therefore, a family of CSRBFs is in- 
troduced. It was initially constructed by Wu [63] and later expanded by 
Wendland [65] and Buhmann [67] , [68] in the mid 1990s. Generally, a 
CSRBF takes the form 

𝜙( 𝑟 ) = ( 1 − 𝑟 ) 𝑝 + 𝑝 ( 𝑟 ) (5) 

in which 

( 1 − 𝑟 ) 𝑝 + = 

{ 

( 1 − 𝑟 ) 𝑝 , 𝑖𝑓 𝑟 ≤ 1 
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(6) 

where p ( r ) is a prescribed polynomial, 𝑟 = ‖𝐱 − 𝐱 𝐼 ‖∕ 𝜗 ( I = 1, 2, …, N s ) is 
the Euclidean distance and ϑ is the dilatation parameter which controls 
the size of the support. Wu [64] first proposed a class of CSRBFs as 
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