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a b s t r a c t 

Scaled boundary finite element method (SBFEM) has proved its abilities in problems with singularities success- 

fully. In this work, the coupling of SBFEM and a hybrid optimization algorithm is employed to determine unknown 

heat flux in the transient heat conduction problems. The genetic algorithm (GA) is a stochastic method which 

solves problems considering a large number of generations, while the deterministic methods such as sequential 

quadratic programming (SQP), which are sensitive to the initial points, can solve problems faster. Combining GA, 

as the main optimizer, and SQP can lead to lower computational time. Herein, a square plate is considered as the 

case study. The inverse analysis is accomplished by utilizing the transient temperature data from direct solution. 

The difference between the calculated and the known values of temperature at four points within the plate is 

considered as the objective function, and the heat fluxes on the upper side of the plate are considered as the 

design variables. As a result, the exact value of the heat fluxes is obtained using this method. This new approach, 

in which the SBFEM as a meshless solver is combined with the hybrid GA-SQP as the optimizer, highlights its 

potentials in solving inverse problems. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

A traditional heat transfer analysis is accomplished by introducing 

material properties, initial condition and boundary conditions, which 

results in temperature distribution in the body. This type of heat trans- 

fer problem is identified as the direct heat transfer problem (DHTP). An 

enormous amount of work has been dedicated to the DHTP, and dif- 

ferent method has been developed. Due to the small size of the body 

or limitation on operation range of probes, it may be a difficult matter 

to measure temperature or heat flux on the surface of a body experi- 

mentally. According to further information at some points of the body, 

these unknown boundary values can be estimated using an appropriate 

inverse method. In fact, the inverse heat transfer problems (IHTP) es- 

tablish a close collaboration between the experimental and theoretical 

problems [1–4] . 

Recently, genetic algorithm (GA) has been the center of attention in 

the IHT problems, because of its privilege characteristics which are less 

dependent on the initial value and do not need any gradient informa- 

tion. The utilization of GA in heat transfer problems has been reviewed 
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in Ref. [5] . The IHTP can be viewed as an optimization problem which 

is aimed to minimize the difference between the measured and the esti- 

mated values. Das et al. [6] combined the genetic algorithm, finite vol- 

ume (FVM) and lattice Boltzmann (LBM) methods to predict unknown 

parameters. In their study, the FVM and LBM were used for obtaining ra- 

diative information and solving energy equation, respectively. The best 

values of unknown parameters were obtained using GA. Das [7] ap- 

proximated the unknown heat transfer coefficient for a cylindrical fin, 

using GA. He also investigated the effect of some temperature measure- 

ments on the prediction of unknown parameter and concluded that a 

reasonable prediction was observed considering more than 50 temper- 

ature points on the body. He et al. [8] investigated a steady-state in- 

verse heat transfer problem and employed multi-objective optimization 

to estimate the thermos-physical properties. They concluded that using 

the multi-objective genetic algorithm resulted in more accurate estima- 

tion which was capable of reducing the effects of noise and errors of 

measurements. Kim and Baek [9] compared different inverse methods 

including the conjugate-gradient method, the hybrid genetic algorithm 

and the finite difference Newton method for inverse radiation problem. 

They made a conclusion that the efficient results were obtained when 
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the hybrid genetic algorithm was used as an initial value selector and 

the finite difference Newton method was applied as an estimator. 

No matter what algorithm is chosen for IHTP, it requires an accurate 

method for a direct heat transfer calculation. The numerical solution 

of IHTP was started by Stolz [10] and since then, the diverse methods 

have been developed for these kinds of heat transfer problem. These 

methods can be categorized in mesh-based and meshless ways [11] . The 

traditional mesh-based methods are those which work with discretized 

mesh systems. The finite element [12,13] , finite volume [14,15] and fi- 

nite difference [16,17] methods are the most well-known mesh-based 

methods which work by generating mesh within the whole domain of 

the body. Reddy and Balaji [18] estimated a temperature dependent 

heat transfer coefficient for a rectangular fin, using the finite difference 

method in a way that led to minimizing the difference between Ther- 

mochromic Liquid Crystal (TLC) measurement and simulated tempera- 

ture. The needs for solving complex engineering problems have made 

the scholars to develop an efficient and accurate numerical method 

which is cost-effective, quick and reliable in many cases. In the finite 

element method (FEM), a spatial discretization of the domain is carried 

out, and for each element, the temperature is interpolated using the 

shape function. The noticeable feature of FEM is its flexibility for mesh 

generation. The traditional FEM relies on the type of mesh employed 

for the problem. So, a balance is required between the accuracy and the 

flexibility in the mesh generation [19] . 

In the boundary element method (BEM), the boundary of the do- 

main is discretized and reduces the dimensions of the problem by one. 

Furthermore, a basic solution, which satisfies the governing equation, 

is required. Sometimes, this analytical solution may lead to a complex 

problem. The scaled boundary finite element method (SBFEM), devel- 

oped by Wolf and Song [20,21] , benefits the advantages of both bound- 

ary element and finite element methods. In this method, the boundary is 

discretized with elements based on FEM, and numerical solution is done 

on the boundary. Then, the partial differential equation of the problem is 

transformed into an ordinary differential equation which can be solved 

analytically [20] . This method not only has a low computational cost 

rather than FEM, but also it does not need any fundamental solution, 

unlike BEM. The traditional boundary element methods have a strong 

limitation on a nonlinear problem that leads to divergence in iterative 

solution [22] . The SBFEM has been extended to the nonlinear problem 

[23] . Because of the aforementioned superiorities of the SBFEM in some 

engineering problems, a great tendency has been grown to employ this 

method as a solver. In spite of all advantages of SBFEM, the need for 

satisfying scaling center requirement causes a limitation in a complex 

geometry. But this matter is settled down by dividing the whole domain 

into smaller subdomains. Moreover, these subdomains can be coupled 

with the finite element [24] and boundary element methods [25] . 

The SBFEM has been applied in different engineering problems for 

example see Refs. [26–33] . He et al. [34] solved a two-dimensional 

steady state heat transfer problem using SBFEM. In their study, to re- 

duce the computational cost, a cyclically symmetry was used and proved 

that the matrix coefficients in SBFEM were block-circulant in a cyclically 

symmetric system. Bazyar and Talebi [35] represented the advantages 

of SBFEM by solving a transient heat transfer problem for different com- 

plex geometries. Lin and Liao [23] combined the traditional SBFEM with 

the homotopy analysis method to make this method more beneficial for 

nonlinear problems and then applied the modified SBFEM for a nonlin- 

ear heat transfer problem. 

This study is focused on the investigation of inverse heat transfer 

problem using a new method as a thermal solver. Herein, the scaled 

boundary finite element method is selected as the heat transfer solver, 

and the hybrid algorithm (GA-SQP) is employed to determine the un- 

known boundary conditions in a transient IHT problem. The SBFEM 

benefits the advantages of both finite element and boundary element 

methods, and has made it an applicable solution method for engineer- 

ing problems including heat transfer. Also, such an extension of SBFEM 

to solve an inverse heat transfer problem has not been reported yet. 

Fig. 1. Spatial discretization of scale boundary finite element method. 

2. Mathematical model 

2.1. Scaled boundary finite element method (SBFEM) 

The derivation and solution procedure of the scaled boundary finite 

element method are given in [20,21] . In this section, a brief review and 

key concepts of this method are presented. For illustrating the concept 

of SBFEM, a two-dimensional bounded domain is considered as shown 

in Fig. 1 . 

The location of scaling center should be selected in a way that the 

entire boundary is visible from this point. Then, the boundary of the 

medium is divided into elements. The coordinates of an element on the 

boundary are defined by {x} and {y}. The interpolation of the element 

is done using a shape function which is denoted by [N( 𝜂)]. The points in 

the domain are obtained by scaling the boundary with the dimensionless 

coordinate 𝜉 which varies from 𝜉 = 1 on the boundary to 𝜉 = 0 on the 

scaling center. The coordinates ( 𝜉, 𝜂) are scaled boundary coordinates. 

So, ( ̂x , ̂y ) is used to define the geometry of interior points: 

x̂ ( ξ, η) = ξ
[
N ( η) 

]
{ x } (1) 

ŷ ( ξ, η) = ξ
[
N ( η) 

]
{ y } (2) 

In other words, Eqs. (1) and (2) are the transformation from Carte- 

sian coordinates ( ̂x , ̂y ) to scaled boundary coordinates ( 𝜉, 𝜂). 

For the purpose of transforming the heat transfer equation into the 

scaled boundary coordinates, it is needed to transform the spatial deriva- 

tives as: { 

𝜕 ∕ 𝜕 ξ
𝜕 ∕ 𝜕 η

} 

= 

[
Ĵ ( ξ, η) 

]{ 

𝜕 ∕ 𝜕 ̂x 
𝜕 ∕ 𝜕 ̂y 

} 

= 

[
b 1 
] 𝜕 

𝜕ξ
+ 

1 
ξ
[
b 2 
] 𝜕 

𝜕η
(3) 

where [
b 1 
]
= 

1 |||Ĵ |||
{ [

N ( η) 
]
, η{ y } 

− 

[
N ( η) 

]
, η{ x } 

} 

(4) 

[
b 2 
]
= 

1 |||Ĵ |||
{ 

− 

[
N ( η) 

]
{ y } [

N ( η) 
]
{ x } 

} 

(5) 

and Ĵ ( ξ, η) is the Jacobian matrix which contains partial derivative of 

x̂ , ̂y on the 𝜉, 𝜂 , and is defined as: [
Ĵ ( ξ, η) 

]
= 

[ 
x̂ , ξ ŷ , ξ
x̂ , η ŷ , η

] 
(6) 

The temperature of an element is interpolated using the shape func- 

tion as following: 

{ T ( ξ, η) } = 

[
N ( η) 

]
{ T ( ξ) } (7) 

{T( 𝜉)} is introduced as nodal temperature function along radial lines 

from scaling center to the boundary. 

After transformation of the heat transfer equation from the Carte- 

sian coordinates to the scaled boundary coordinates, employing the 
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