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a b s t r a c t 

A direct half-plane time-domain boundary element method (BEM) was developed and successfully applied to 

analyze the transient response of ground surface in the presence of arbitrarily shaped lined tunnels, embedded 

in a linear elastic half-space, subjected to propagating obliquely incident plane SH-waves. To prepare the model, 

only the interface and inner boundary of the lining need to be discretized. The problem was decomposed into a 

pitted half-plane and a closed ring-shaped domain, corresponding to the substructure procedure. After computing 

the matrices and satisfying the compatibility as well as boundary conditions, the coupled equations were solved 

to obtain the boundary values. To validate the responses, a practical example was analyzed and compared with 

those of the published works. The results showed that the model was very simple and the accuracy was favorable. 

Advanced numerical results were also illustrated for single/twin circular lined tunnels as synthetic seismograms 

and three-dimensional frequency-domain responses. The method used in this paper is recommended to obtain 

the transient response of underground structures in combination with other numerical methods. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

According to the extensive development of urban texture and the vi- 
tal necessity of lifelines, infrastructure and underground openings have 
found an important role in human societies. A full understanding of 
the behaviors of underground tunnels including tunnels for transporta- 
tion, water, and facilities, can assist in presenting an optimum layout. 
The importance of this issue has increased because of the complex per- 
formance of the tunnels against seismic loads. The seismic analysis of 
underground tunnels has been used by the researchers for almost half 
a century. A complete review up to 1981 can be found in Ariman and 
Muleski [1] about the methods employed for analyzing the ground with 
underground tunnels. Apart from experimental and field approaches, 
solution methods can be divided into three categories: analytical, semi- 
analytical, and numerical [2] . 

To analyze the ground response in the presence of unlined and lined 
tunnel cases, analytical and semi-analytical methods were developed as 
well. Lee [3] , Datta and Shah [4] , Lee et al. [5] , Tsuar and Chang [6] , 
and Gao et al. [7] investigated the unlined tunnels subjected to seismic 
waves by analytical approaches. The seismic analysis of a single-phase 
medium including a lined tunnel was presented in the analytical studies 
of Lee and Trifunac [8] , Balendra et al. [9] , Smerzini et al. [10] , Zhang 
et al. [11] , Li et al. [12] , Min and Bing-Yu [13] , Liu et al. [14] , Xu et al. 
[15] , and Yi et al. [16] . In the use of analytical procedures, the problem 
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of lined tunnel embedded in a multi-phase medium was explored by Shi 
et al. [17] , Hasheminejad and Kazemirad [18] , and Jiang et al. [19] . 
In this regard, some studies can be found in the literature on modeling 
the embedded lined tunnels with the help of semi-analytical approaches 
which include Datta et al. [20] , Wong et al. [21] , Chin et al. [22] , Moore 
and Guan [23] , Manoogian [24] , Davis et al. [25] , Yeh et al. [26] , Liao 
et al. [27] , and Liu et al. [28] in a single-phase medium, and Zhou et al. 
[29] in a multi-phase medium. 

According to what is observed in the nature, although the responses 
of analytical or semi-analytical methods have a high accuracy, various 
types of arbitrarily shaped topographic features cannot be applied for 
modeling in reality. It results in the development of numerical methods 
with a good flexibility. Generally, these methods can be divided into 
two types of volumetric and boundary methods. Despite the develop- 
ment of volumetric methods such as finite element method (FEM) or fi- 
nite difference method (FDM) and their simple formulations, the whole 
body including the inside and boundaries must be discretized in order 
to model unlined/lined underground tunnels and topographies (e.g. Be- 
sharat et al. [30] ; Esmaeili et al. [31] ; Faccioli et al. [32] ; Gelagoti et 
al. [33] ; Huang et al. [34] ; Narayan et al. [35] ; Rabeti and Baziar [36] ; 
Yiouta-Mitra et al. [37] ). As a result, special attention has been paid to 
the boundary element method (BEM) among the various existing nu- 
merical methods in the recent three decades. Full reviews of BEM and 
its application can be respectively found in Beskos [38] and Stamos and 
Beskos [39] for underground structures. 
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In order to model underground tunnels using BEM approaches, the 
surrounding boundaries must be discretized. If the two-dimensional 
BEM formulation was established based on a full-plane scenario, the 
circumference of the unlined/lined tunnel, smooth ground surface, and 
enclosing boundary must be meshed [40] . In this regard, full-plane BEM 

was statically used by Crouch and Starfield [41] , Yang and Sterling [42] , 
Xiao and Carter [43] , Panji et al. [44] , Wu et al. [45] , and Panji et al. 
[46] for modeling underground tunnels. Also, this method was dynam- 
ically utilized to analyze the seismic behavior of the ground including 
unlined/lined tunnels in the transformed domains (e.g. Kattis et al. [47] ; 
Liu and Liu [48] ; Luco and de barros [49] ; Manolis and Beskos [50] ; Par- 
vanova et al. [51] ; Yu and Dravinski [52] ). 

When the stress-free boundary conditions on the smooth ground sur- 
face are satisfied and applied in the formulation, the half-plane BEM sce- 
nario is obtained [53] . Although the formulation became more complex, 
the accuracy and modeling were improved. In the use of this method, 
only the boundaries around the unlined/lined tunnel need to be dis- 
cretized. Similar to the full-plane case, half-plane BEM was developed 
in both static and dynamic states. Some researchers statically utilized 
this method to analyze half-plane problems in the presence of under- 
ground tunnels as well as inhomogeneities (e.g. Dong et al. [54] ; Dong 
and Lo [55] ; Panji and Ansari [56] ; Telles and Brebbia [57] ; Ye and 
Sawada [58] ). In the frequency domain, half-plane BEM was dynami- 
cally applied to obtain the seismic ground response with unlined/lined 
tunnels (Ba and Yin [59] ; Benites et al. [60] ). Despite the fact that the 
formulation of the method in the time-domain is more difficult, ana- 
lyzing the problems with time-dependent geometry and the ability to 
combine with other numerical approaches can be only achieved in the 
use of transient responses. Most studies carried out using time-domain 
BEM were not only formulated in the full-plane, but also applied to in- 
vestigate surface topographies and unlined tunnels (e.g. Alielahi et al. 
[61] ; Kamalian et al. [62–64] ; Takemia and Fujiwara [65] ). To the best 
knowledge of the present authors, in the few studies using half-plane 
time-domain BEM, the lined tunnel problem embedded in a half-plane 
has not been studied so far (Belytschko and Chang [66] ; Hirai [67] ; Panji 
et al. [53 , 68 , 69] ; Rice and Sadd [70] ). 

This paper develops a half-plane time-domain BEM for analyzing 
seismic ground response in the presence of arbitrarily shaped under- 
ground lined tunnels subjected to propagating obliquely incident SH- 
waves. By the assistance of an appropriate substructuring process, the 
model was decomposed into a half-plane with a cavity and a closed ring- 
shaped medium. After applying the method for each domain and obtain- 
ing the influence coefficients of the matrices, continuity and boundary 
conditions were used to determine the assembled coupled equation. The 
method was successfully implemented in a developed algorithm pre- 
viously called as DASBEM [53] . The capability and efficiency of the 
method as well as the prepared computer code were investigated by 
solving a practical example and comparing the results with those of 
the published works. With considering some intended parameters, a nu- 
merical study was eventually conducted to obtain the ground surface 
response including single/twin circular lined tunnels. Displaying a pow- 
erful approach for preparing simple models of underground lined tun- 
nels, determining accurate results in the use of the proposed method, 
and presenting some applicable graphs to complete the results were the 
main purposes of the present paper. 

2. Statement of the problem 

Consider a homogeneous linear elastic half-plane including an arbi- 
trarily shaped underground lined tunnel as shown in Fig. 1 . It is assumed 
that the lining and surrounding domain have a perfect interaction. The 
governing scalar wave equation and existing boundary conditions on 
the smooth ground surface are respectively as follows [71] : 

𝜕 2 𝑢 ( 𝑥, 𝑦, 𝑡 ) 
𝜕 𝑥 2 

+ 

𝜕 2 𝑢 ( 𝑥, 𝑦, 𝑡 ) 
𝜕 𝑦 2 

+ 𝑏 ( 𝑥, 𝑦, 𝑡 ) = 

1 
𝑐 2 
𝜕 2 𝑢 ( 𝑥, 𝑦, 𝑡 ) 

𝜕 𝑡 2 
(1) 

and: 

𝜇
𝜕𝑢 ( 𝑥, 𝑦, 𝑡 ) 

𝜕𝑛 
|𝑦 =0 = 0 (2) 

where u ( x, y, t ) and b ( x, y, t ) are antiplane displacement and body force 
at point ( x, y ) and current time t , respectively; c is shear wave velocity 
given by 

√
𝜇∕ 𝜌, with 𝜇 as shear modulus and 𝜌 as mass density; and n is 

the normal vector for the ground surface. As can be seen in Fig. 1 , the 
model is decomposed into two domains, a uniform half-plane with ar- 
bitrarily shaped unlined cavity, and a closed ring-shaped medium. To 
solve the problem, half-plane time-domain BEM must be applied for 
each domain, using the image source approach to define a complemen- 
tary area. Moreover, Fig. 1 depicts the meshing form using the proposed 
method located only on the surrounding boundaries. 

3. Half-plane time-domain BEM 

The key parameters of BEM approaches are the solutions obtained 
from basic equations. Transient half-plane fundamental solutions can 
be achieved by the singular solution of Eq. (1 ) and considering Eq. (2 ). 
These solutions can be found in Panji et al. [53] . If the problem is stat- 
ically solved, fundamental solutions are adequate for the formulating 
process. An application of elastostatic half-plane BEM in modeling lined 
tunnels can be found in Panji and Ansari [56] . 

3.1. Boundary integral equation (BIE) 

The original form of the direct time-domain boundary integral equa- 
tion (BIE) can be obtained by applying the weighted residual integral to 
Eq. (1) and ignoring the contributions from initial conditions and body 
forces [72 , 73] . If the problems include incoming waves, the original BIE 
must be modified [74 , 75] . The modified form of BIE is as follows: 

𝑐 ( 𝝃) 𝑢 ( 𝝃, 𝑡 ) = ∫Γ
{ 

∫
𝑡 

0 

[
𝑢 ∗ ( 𝒙 , 𝑡 ; 𝝃, 𝜏) .𝑞 ( 𝒙 , 𝜏) − 𝑞 ∗ ( 𝒙 , 𝑡 ; 𝝃, 𝜏) .𝑢 ( 𝒙 , 𝜏) 

]
𝑑𝜏

} 

× 𝑑Γ( 𝒙 ) + 𝑢 𝑓𝑓 ( 𝝃, 𝑡 ) (3) 

u ∗ and q ∗ are half-plane time-domain displacement and traction funda- 
mental solutions at position x and time t due to a unit antiplane impul- 
sive force in position 𝝃 and preceding time 𝜏, respectively [53] ; u and q 
are displacements and tractions of boundary, respectively; Γ( x ) denotes 
the boundary of the body; c ( 𝝃) is the geometry coefficient; and u ff is the 
free field displacement of ground surface without surface irregularities. 

3.2. Discretizing BIE 

To solve BIE and carrying out the integrations, the time axis and the 
boundary of the body must be discretized. By discretizing the time axis 
using N equal increments with duration Δt ( t = N Δt ), temporal integra- 
tion can be analytically accomplished. With assuming a linear variation 
for the temporal shape functions, the following form of BIE can be ob- 
tained: 

𝑐 ( 𝝃) 𝑢 𝑁 ( 𝝃) = 

𝑁 ∑
𝑛 =1 

∫Γ
( [

𝑈 

𝑁− 𝑛 +1 
1 ( 𝒙 , 𝝃) + 𝑈 

𝑁− 𝑛 
2 ( 𝒙 , 𝝃) 

]
𝑞 𝑛 ( 𝒙 ) 

− 

[
𝑄 

𝑁− 𝑛 +1 
1 ( 𝒙 , 𝝃) + 𝑄 

𝑁− 𝑛 
2 ( 𝒙 , 𝝃) 

]
𝑢 𝑛 ( 𝒙 ) 

) 

× 𝑑Γ( 𝒙 ) + 𝑢 𝑓 𝑓 .𝑁 ( 𝝃) (4) 

where u n ( x ) and q n ( x ) are displacement and traction fields, respec- 
tively; u ff.N stands for the free field displacement at time t = N Δt ; 
and 𝑈 

𝑁− 𝑛 +1 
1 ( 𝒙 , 𝝃) + 𝑈 

𝑁− 𝑛 
2 ( 𝒙 , 𝝃) and 𝑄 

𝑁− 𝑛 +1 
1 ( 𝒙 , 𝝃) + 𝑄 

𝑁− 𝑛 
2 ( 𝒙 , 𝝃) denote the 

half-plane displacement and traction time-convoluted kernels, respec- 
tively. These closed-form responses can be found in Panji et al. [53] and 
Panji et al. [68] . All the processes were completely analytically car- 
ried out up to now. After discretizing the necessary boundaries of the 
body by M quadratic elements, spatial integration can be numerically 
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