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a b s t r a c t 

This paper focuses on developing a mesh-free method to analyze vibrational behavior of strain gradient nano- 

beams. For this purpose, the paper starts with the dynamic equation of a strain gradient Euler beam, and then the 

moving least-square (MLS) approximation is used to construct the shape function and its second- and third-order 

derivatives. A mesh-free numerical simulation scheme is develop, in which the higher-order gradient of strain 

is directly approximated with the nodal components due to the higher-order continuity of the shape function. 

The reliability of the mesh-free method is illustrated by an example of the simply-supported beam. Numerical 

simulations are carried out to study the small scale effect on both natural frequencies and vibration mode shapes 

of a single-walled carbon nanotube (SWCNT) which can be modeled as a nano-beam. The results of the mesh- 

free analysis are in good agreement with the theoretical results in analyzing the simply-supported SWCNT. The 

difference of natural frequency between that predicted by the strain gradient elastic beam and the classical beam 

rises with the increasing of the mode order and decreasing of the length. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent years, numerous researches demonstrated the appearance 

of scale effects due to microstructure at the micro and nano-scale [1–3] . 

The scale effect can be successfully modeled by employing the nonlocal 

elastic theory, in which the constitutive equations include some material 

parameters of length scale, in addition to the classical material parame- 

ters. The general nonlocal theory includes the theory with higher-order 

stress gradient by Eringen [4] , the couple stress theory and strain gra- 

dient elasticity theory [5] . Toupin [6] and Mindlin [7] formulated the 

theory of strain gradient elasticity in 1960s. Aifantis [8,9] suggested a 

simple strain gradient theory. Different from the conventional elastic- 

ity, the stress of structure made of strain gradient material considers 

not only the strain of this point, but also the higher-order gradient of 

strain. 

The beam model is very efficient for studying dynamic behaviors of 

slender nanostructures such as carbon nanotubes (CNTs) or nanowires. 

The study of vibration behavior for CNTs is of particular interest for 

their potential applications [10,11] . Since controlled experiments re- 

main difficult and computationally expensive for atomistic simulation, 

elastic continuum models have been widely applied to CNTs in vibration 

analysis [12–14] . Recently, several research teams have implemented 

nonlocal continuum models to describe the size effect of nanostruc- 

ture [15–17] . Most of these studies are mainly on the theoretical anal- 
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ysis of very simple support boundary conditions, but numerical sim- 

ulations are rare due to the complexity induced by the higher-order 

gradient of strain. Only a few works on the finite element method or 

mesh-free method have been developed for complex boundary condi- 

tions and structures cases [18–22] . But, solving of the boundary value 

problems is complicated with the inclusion of the higher-order gradi- 

ent of strain. The interpolation requires C 

1 -continuity in the finite ele- 

ment method, leading to difficulty in the establishment of elements and 

the construction of interpolation functions [23] . The mesh-free method 

has attracted more and more attention from researchers in recent years, 

and it is regarded as a potential numerical method in computational 

mechanics. After Belytschko et al. [24] put forward the element free 

Galerkin method, various mesh-free methods such as reproducing ker- 

nel particle method (RKPM) [25] , improved moving-least squares Ritz 

method (IMLS-Ritz) [26] , boundary node method (BNM) [27] , point in- 

terpolation method (PIM) [28–32] , have been developed and applied to 

static and dynamic problems of wide field. Recently, mesh-free methods 

have been applied to simulate the materials with strain gradient effects 

[33–38] . The mesh-free method has some distinct advantages. It does 

not require a mesh to discretize the problem domain, and the approxi- 

mate solution is constructed entirely based on a set of scattered nodes, 

so the mesh-free shape function has better continuity and smoothness. 

In particular, the moving least-square (MLS) approximations possess 

nonlocal properties and satisfy the higher-order continuity requirement 

http://dx.doi.org/10.1016/j.enganabound.2017.09.001 

Received 17 July 2016; Received in revised form 21 August 2017; Accepted 5 September 2017 

Available online 20 September 2017 

0955-7997/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.enganabound.2017.09.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enganabound
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2017.09.001&domain=pdf
mailto:walfe@nuaa.edu.cn
mailto:walfe@sohu.com
mailto:kmliew@cityu.edu.hk
http://dx.doi.org/10.1016/j.enganabound.2017.09.001


L. Wang et al. Engineering Analysis with Boundary Elements 84 (2017) 231–236 

automatically. This intrinsic nonlocal property leads to real rotation free 

approximation [33] , thus displacements can be used as the only nodal 

freedoms. To the authors ’ best knowledge, however, only a few works 

have been available for the use of mesh-free model in dealing with vi- 

bration of strain gradient nano-beams with small scale effects taken into 

consideration. 

The present work attempts to employ the mesh-free method to study 

the vibration behavior of strain gradient beams with size effect. The pa- 

per begins with a strain gradient Euler beam model. Next, a mesh-free 

beam model based on the MLS approximations for analysis the vibra- 

tional behavior of the nano-beam is presented based on the principle of 

virtual work. Then numerical simulations of mesh-free method are car- 

ried out to study the small scale effect on both natural frequencies and 

vibration modes of a SWCNT which can be modeled as a nano-beam. 

Finally, some concluding remarks are drawn. 

2. Strain gradient Euler beam model 

The nonlocal elasticity which considers a lattice structure is rising 

again to model the nanostructures. The constitutive law characterizing 

the nonlocal elastic material in a one-dimensional case reads [3,39] 

𝜎𝑥 = 𝐸 

( 

𝜀 𝑥 + 𝑟 2 
𝜕 2 𝜀 𝑥 

𝜕 𝑥 2 

) 

, (1) 

where E represents Young’s modulus, 𝜀 x the axial strain and 𝜎x axial 

stress, r is a material parameter to reflect the influence of the microstruc- 

ture in the nonlocal elastic material. Then the dynamics equation of 

strain gradient Euler beam can be expressed as 

𝜌𝐴 

𝜕 2 𝑤 

𝜕 𝑡 2 
+ 𝐸𝐼 

( 

𝜕 4 𝑤 

𝜕 𝑥 4 
+ 𝑟 2 

𝜕 6 𝑤 

𝜕 𝑥 6 

) 

= 0 . (2) 

For a simply-supported beam, the boundary conditions can be simply 

assumed as 

𝑤 ( 0 ) = 0 , 𝑤 

′′( 0 ) = 0 , 𝑤 

( 4 ) ( 0 ) = 0 , 
𝑤 ( 𝐿 ) = 0 , 𝑤 

′′( 𝐿 ) = 0 , 𝑤 

( 4 ) ( 𝐿 ) = 0 , (3) 

where L is the length of the beam. We assume the deflection of the 

simply-supported beam as 

𝑤 ( 𝑥, 𝑡 ) = 𝑤̂ sin 𝑘𝜋
𝐿 

𝑒 𝑖𝜔𝑡 , 𝑘 = 1 , 2 , 3 , ⋅ ⋅ ⋅, (4) 

where 𝑤̂ is a constant, 𝜔 is angular frequency and 𝑖 ≡ √
−1 . Substituting 

Eq. (4) into Eq. (2) , we have the angular frequency of strain gradient 

vibration for the simply-supported beam 

𝜔 = 

(
𝑘𝜋

𝐿 

)2 
√ 

𝐸𝐼 

𝜌𝐴 

[ 
1 − 𝑟 2 

(
𝑘𝜋

𝐿 

)2 ] 
. (5) 

If r = 0, Eq. (5) leads to 

𝜔̄ = 

(
𝑘𝜋

𝐿 

)2 √ 

𝐸𝐼 

𝜌𝐴 

. (6) 

This is the angular natural frequency of a classical simply-supported 

Euler beam. The frequency ratio between natural frequency given by 

the strain gradient elastic beam and classical beam can be defined as 

𝜔 

𝜔̄ 

= 

√ 

1 − 𝑟 2 
(
𝑘𝜋

𝐿 

)2 
. (7) 

3. MLS mesh-free model for vibration of strain gradient beam 

Considering the higher-order derivative of nonlocal elastic theory 

compares to the conventional elasticity theory, the function of strain is 

necessarily C 

1 -continuous in a discretizing procedure. The MLS approxi- 

mation is used to build the numerical discretization scheme. The virtual 

work principle is used to obtain a mesh-free model for vibration of the 

strain gradient beam. The virtual work for vibration of one-dimensional 

case can be expressed as 

∭𝑉 

𝐸 

( 

𝜀 𝑥 + 𝑟 2 
𝜕 2 𝜀 𝑥 

𝜕 𝑥 2 

) 

𝛿𝜀 𝑥 𝑑 𝑉 + ∭𝑉 

𝜌
𝜕 2 𝑤 

𝜕 𝑡 2 
𝛿𝑤𝑑 𝑉 = 0 . (8) 

Applying the Green divergence theorem, one can obtain the virtual 

work function for vibration of a beam as 

∫Ω 𝐸𝐼 
( 

𝜕 2 𝑤 

𝜕 𝑥 2 
𝜕 2 ( 𝛿𝑤 ) 
𝜕 𝑥 2 

− 𝑟 2 
𝜕 3 𝑤 

𝜕 𝑥 3 
𝜕 3 ( 𝛿𝑤 ) 
𝜕 𝑥 3 

) 

𝑑𝑥 

+ ∫Ω 𝜌𝐴 

𝜕 2 𝑤 

𝜕 𝑡 2 
𝛿𝑤𝑑𝑥 + 𝐸𝐼 𝑟 2 

𝜕 3 𝑤 

𝜕 𝑥 3 
𝜕 2 ( 𝛿𝑤 ) 
𝜕 𝑥 2 

|||||Γ = 0 , (9) 

where Γ is the boundary of the domain Ω. The boundary condition is set 

as 

𝐸𝐼 𝑟 2 
𝜕 3 𝑤 

𝜕 𝑥 3 
𝜕 2 ( 𝛿𝑤 ) 
𝜕 𝑥 2 

|||||Γ = 0 . (10) 

So, Eq. (9) can be rewritten as 

∫Ω 𝐸𝐼 
( 

𝜕 2 𝑤 

𝜕 𝑥 2 
𝜕 2 ( 𝛿𝑤 ) 
𝜕 𝑥 2 

− 𝑟 2 
𝜕 3 𝑤 

𝜕 𝑥 3 
𝜕 3 ( 𝛿𝑤 ) 
𝜕 𝑥 3 

) 

𝑑𝑥 + ∫Ω 𝜌𝐴 

𝜕 2 𝑤 

𝜕 𝑡 2 
𝛿𝑤𝑑𝑥 = 0 . (11) 

We can assume that 

𝑤 = 𝑊 ( 𝑥 ) 𝑒 𝑖𝜔𝑡 , (12) 

where W ( x ) is the displacement at x . Substituting Eq. (12) into 

Eq. (11) gives 

∫Ω 𝐸𝐼 
( 

𝑑 2 𝑊 

𝑑 𝑥 2 
𝑑 2 ( 𝛿𝑊 ) 
𝑑 𝑥 2 

− 𝑟 2 
𝑑 3 𝑤 

𝑑 𝑥 3 
𝑑 3 ( 𝛿𝑊 ) 
𝑑 𝑥 3 

) 

𝑑𝑥 − 𝜔 

2 ∫Ω 𝜌𝐴𝑊 𝛿𝑊 𝑑𝑥 = 0 . 

(13) 

Since the MLS approximation can automatically satisfy the higher- 

order continuity, the components 𝑊 ,𝑥𝑥 = 

𝑑 2 𝑊 

𝑑 𝑥 2 
and 𝑊 ,𝑥𝑥𝑥 = 

𝑑 3 𝑊 

𝑑 𝑥 3 
in 

Eq. (13) can be approximated with nodal components directly. The cal- 

culation of shape functions and their derivatives by the MLS method are 

illustrated as follows. The deflect W ( x )defined on the segment [0, L ] is 

set as 

𝑊 

𝑀 ( 𝑥 ) = 

𝑚 ∑
𝑖 =1 

𝑝 𝑖 ( 𝑥 ) 𝑎 𝑖 ( 𝑥 ) = 𝐩 𝑇 ( 𝑥 ) 𝐚 ( 𝑥 ) , (14) 

where p i ( x ) are the monomial basis functions, a i ( x ) are the coefficient 

of the basis functions and m is the number of terms in basis function. 

To construct the third-order derivative, the follow cubic basis function 

is used: 

𝐩 𝑇 ( 𝑥 ) = 

(
1 , 𝑥, 𝑥 2 , 𝑥 3 

)
. (15) 

The unknown coefficient a i ( x ) in Eq. (14) can be determined by the 

minimization of the weighted residual J 

𝐽 = 

𝑁𝑃 ∑
𝑗=1 

𝐺( 𝑥 − 𝑥 𝑗 ) 
[
𝐩 𝑇 ( 𝑥 𝑗 ) 𝐚 ( 𝑥 𝑗 ) − 𝑊 𝑗 

]2 
, (16) 

where G ( x − x j ) is the weight function, and NP is the number of nodes 

within G ( x − x j ) > 0. The minimum of J in Eq. (16) with respect to a ( x ) 

leads to a set of linear equations: 

𝐀 ( 𝑥 ) 𝐚 ( 𝑥 ) = 𝐁 ( 𝑥 ) 𝐖 , (17) 

where W = ( W 1 , W 2 , ⋅⋅⋅, W NP ) 
T , and 

𝐀 ( 𝑥 ) = 

𝑁𝑃 ∑
𝑗=1 

𝐺( 𝑥 − 𝑥 𝑗 ) 𝐩 ( 𝑥 𝑗 ) 𝐩 𝑇 ( 𝑥 𝑗 ) , (18a) 

𝐁 ( 𝑥 ) = 

[
𝐺 

(
𝑥 − 𝑥 1 

)
𝑝 
(
𝑥 1 
)
, 𝐺 

(
𝑥 − 𝑥 2 

)
𝑝 
(
𝑥 2 
)
⋯ , 𝐺 

(
𝑥 − 𝑥 NP 

)
𝑝 
(
𝑥 NP 

)]
. (18b) 

Thus, the coefficients a ( x )can be obtained from Eq. (17) as 

𝐚 ( 𝑥 ) = 𝐀 

−1 ( 𝑥 ) 𝐁 ( 𝑥 ) 𝐖 . (19) 

Substituting Eq. (19) into Eq. (14) , one can get 

𝑊 

𝑀 ( 𝑥 ) = 𝐩 𝑇 ( 𝑥 ) 𝐀 

−1 ( 𝑥 ) 𝐁 ( 𝑥 ) 𝐰 = 𝛗𝐰 = 

𝑁𝑃 ∑
𝑗=1 

𝜙𝑗 ( 𝑥 ) 𝑊 𝑗 ( 𝑥 ) , (20) 
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