
Engineering Analysis with Boundary Elements 83 (2017) 96–106 

Contents lists available at ScienceDirect 

Engineering Analysis with Boundary Elements 

journal homepage: www.elsevier.com/locate/enganabound 

On solving free surface problems in layered soil using the method of 
fundamental solutions 

Jing-En Xiao, Cheng-Yu Ku 

∗ , Chih-Yu Liu, Chia-Ming Fan, Weichung Yeih 

Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung, Keelung, Taiwan 

a r t i c l e i n f o 

Keywords: 

Seepage 
Free surface 
Layered soil 
The method of fundamental solutions 
The domain decomposition method 

a b s t r a c t 

This paper presents the numerical solutions of free surface seepage flow in layered soil using the method of fun- 
damental solutions (MFS). The numerical solutions are approximated by a set of fundamental solutions of the 
two-dimensional Laplace equation which are expressed in terms of sources located outside the domain of the 
problem. The unknown coefficients in the linear combination of the fundamental solutions which are accom- 
plished by collocation imposing the boundary condition at a finite number of points can then be solved. To deal 
with the seepage problems of layered soil profiles, the domain decomposition method was adopted so that flux 
conservation and the continuity of pressure potential at the interface between two consecutive layers can be con- 
sidered in the numerical model. The validity of the model is established for a number of test problems, including 
seepage problems in a rectangular dam, a trapezoidal dam, and an earth dam, by comparing numerical results 
with those from other methods. Application examples were also carried out. The results reveal that the proposed 
method based on the MFS has great numerical stability for solving seepage flow with nonlinear free surface in 
layered heterogeneous soil even with large contrasts in the hydraulic conductivity. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Free surface seepage problems have raised much attention because 
it is of importance in the design of embankments, earth dams, and slope 
stability. The determination of the phreatic line and pressure head dis- 
tributions is perhaps the crucial issue of free surface seepage analysis. In 
the past, researchers utilized several methods to determine the location 
of free surface such as Aitchison, Westbrook, Liggett and Liu, and Chen 
et al. [1–4] . The free surface seepage flow is governed by the Laplace 
equation and the solution may be carried out analytically and numeri- 
cally. Due to the strong non-linearity, analyzing seepage problems with 
a free surface is complex while the remeshing during the iterations using 
conventional mesh-based numerical methods, such as the finite differ- 
ence method [1,5] , the boundary element method [4,6] and the finite el- 
ement method [2,7–12] may lead to convergence problems. In addition, 
analytical solutions of the Laplace equation require several assumptions 
such as ideal solution domains and homogeneous material properties. 

Differing from conventional mesh-based methods, the meshless 
method has the advantages that it does not need the mesh generation. 
The meshless method such as the element-free Galerkin method has been 
used to simulate two-dimensional seepage flow in embankments [13] . 
Though a background integration mesh is still used to conduct numerical 
integration, the nodes are independent of the mesh and can be disposed 
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of freely. The method of fundamental solutions (MFS), first presented by 
Kupradze and Aleksidze in 1964 [14] , is also one of the meshless meth- 
ods. In the MFS, the solution is approximated by a set of fundamental 
solutions of the governing equation which are expressed in terms of 
sources located outside the domain of the problem. The unknown co- 
efficients in the linear combination of the fundamental solutions and 
the final locations of the sources are determined so that the boundary 
conditions are satisfied in a least squares sense. The MFS needs only in- 
formation of nodes on the boundary, and avoid the adjustment of mesh 
on the free surface during iteration. Nodes can be easily added, moved 
or removed, which greatly simplifies the analysis, so it is thought to be 
advantageous for the problem of seepage with a free surface. 

The MFS has been successfully applied to a variety of problems, such 
as the non-linear Poisson equation [15,16] , inverse problem [17–19] , 
Stokes ’ problem [20] , modified Helmholtz equation [21] , and so on. 
Later, Chen and Gu [22] adopted a new formulation of singular bound- 
ary method to solve the two-dimensional potential problems. For the 
moving boundary problem, the MFS has been used in the bubble shape 
with the pressure equilibrium at the bubble boundary [23] . In 2009, 
Š arler [24] proposed the modified method of fundamental solutions to 
the potential flow problems by deriving the formulations with the sin- 
gle layer and the double layer fundamental solutions. Later, Perne et 
al. [25] developed the boundary distributed source method to solve 
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Fig. 1. Free surface seepage flow through a rectangular dam. 

free boundary problems associated with the transport of water from the 
conduit to the porous matrix. Karageorghis et al. [26] proposed a mov- 
ing pseudo-boundary MFS for the determination of the boundary of a 
void. Besides, Sincich et al. [27] presented the non-singular method of 
fundamental solutions for solving two-dimensional Stokes flow prob- 
lems. Chaiyo et al. [28] have used the MFS to solve free boundary satu- 
rated seepage problems. Previous studies demonstrate that the MFS has 
been widely used to find the location of free boundary. However, the 
determination of the phreatic line has only been studied in the homo- 
geneous porous medium. The study of seepage flow through dams in 
layered heterogeneous soil using the MFS has not been reported yet. 

In this paper, the numerical solutions of seepage flow through dams 
in layered soil using the MFS were investigated. Free boundary is re- 
garded as a moving boundary with the over-specified boundary con- 
ditions and the MFS is used to find the location of the free boundary. 
To deal with the seepage problems of layered soil profiles, the domain 
decomposition method (DDM) [29] was adopted so that flux conser- 
vation and the continuity of pressure potential at the interface between 
two consecutive layers could be considered in the numerical model. The 
validity of the model is established for a number of test problems, in- 
cluding seepage problems in a rectangular dam, a trapezoidal dam, and 
an earth dam, by comparing numerical results with those from other 
methods. Application examples were also carried out. 

The remainder of this article is organized as follows. Section 2 de- 
scribes the problem statement of the two-dimensional free surface seep- 
age problem. Section 3 gives the formulation of the method of funda- 
mental solutions to solve free surface seepage flow through dams in lay- 
ered soil. In Section 4 , numerical examples were conducted including 
rectangular dam, trapezoidal dam and earth dam. Finally, conclusions 
are presented in Section 5 . 

2. Problem statement 

In this paper, a two-dimensional free surface seepage problem is con- 
sidered in Fig. 1 . The steady-state flow through a homogenous dam sat- 
isfies the Laplace governing equation as follows: 

Δℎ ( 𝑥, 𝑦 ) = 0 in Ω. (1) 

In the above equation, h is the total head and Δ is the Laplace oper- 
ator. Referring to Fig. 1 , the boundary conditions of a rectangular dam 

can be presented by Γ1 , Γ2 , Γ3 , Γ4 , and Γ5 . In the Γ2 and Γ5 , the Dirichlet 
boundary conditions are given as 

ℎ = 𝐻 2 on Γ2 , (2) 

ℎ = 𝐻 1 on Γ5 . (3) 

Based on the Bernoulli equation, we neglected the velocity head and 
the total head or the potential can be written as 

ℎ = 𝑌 ( 𝑥 ) + 

𝑝 

𝛾
, (4) 

where Y ( x ) is the elevation head, p is the pressure, and 𝛾 is the unit 
weight of fluid. In the Γ3 and Γ4 , the free surface boundaries are given 
as over-specified boundary conditions as 

𝜕ℎ 

𝜕𝑛 
= 0 , ℎ = 𝑌 ( 𝑥 ) on Γ3 and Γ4 . (5) 

In the Γ1 , the no flow Neumann boundary condition to simulate the 
imperious boundary is given as 

𝜕ℎ 

𝜕𝑛 
= 0 on Γ1 . (6) 

Since h = Y ( x ) is unknown in a priori which needs to be determined 
iteratively after the initial guess of the free surface, the MFS adopted to 
find the location of free boundary is expressed in the following section. 

3. The method of fundamental solutions 

Recently, the MFS has been developed and applied if the fundamen- 
tal solution of the governing equation is known. The MFS is a collocation 
method, i.e. the boundary conditions are imposed only at a finite num- 
ber of points x k in which k = 1, ..., M and M is the number of boundary 
collocation points. The vector x = ( x 1 , x 2 ,..., x L ) and L is the dimension 
of Euclidean space. In the MFS, the fundamental solutions are trial func- 
tions and they satisfy the governing equation as follows: 

Δ𝐹 ( 𝐱 , 𝐲 ) = 𝛿( 𝐱 − 𝐲) , (7) 

where F ( x, y ) is the fundamental solution of the governing equation, Δ
is the Laplace operator, x is the spatial coordinate which is collocated 
on the boundary, y = ( y 1 , y 2 ,..., y L ) is the source point, and 𝛿( x − y ) is the 
Dirac delta function. The solution domain is Ω⊂ℜ 

2 with the boundary Γ. 
We can find an approximation solution of the two-dimensional Laplace 
equation as follows: 

ℎ ( 𝐱) ≈
𝑁 ∑
𝑗=1 

𝑐 𝑗 𝐹 ( 𝐱, 𝐲 𝑗 ) , (8) 

where x ∈ Ω and y j ∉ Ω and N is the number of source points which 
are placed outside the domain. The fundamental solution of Laplace 
equation can be obtained as 

𝐹 ( 𝐱, 𝐲 𝑗 ) = − 

1 
2 𝜋

ln 
(
𝑟 𝑗 
)
. (9) 

It is noted that h ( x ) satisfies the homogenous differential equation in 
the domain as a function of x and r j is defined as the distance between 
the boundary point and source point, 

𝑟 𝑗 = 

|||𝐱 − 𝐲 𝑗 
|||. (10) 

Considering the boundary conditions, we have h ( x ) = g ( x ) and 
𝜕 

𝜕𝑛 
ℎ ( 𝐱) = 𝑓 ( 𝐱) where g ( x ) and f ( x ) represent the Dirichlet boundary con- 

dition and the Neumann boundary condition, respectively. We may se- 
lect a finite number of collocation points x k over the boundary such that 

𝑁 ∑
𝑗=1 

𝑐 𝑗 𝐹 ( 𝐱 𝑘 , 𝐲 𝑗 ) = 𝑔( 𝐱 𝑘 ) , 𝑘 = 1 , ..., 𝑀, (11) 

where c j are the constant coefficients to be solved, and g ( x k ) is the 
Dirichlet boundary condition imposed at boundary collocation points. 
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