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a b s t r a c t 

Full waveform inversion is a technique to recover images of the subsurface using data from a seismic survey. 

Nonlinearity, ill-posedness, presence of noise in data, a large number of parameters, different kinds of parameters, 

and limitations of data are some of the factors that contribute to instabilities of the solution. One of the strategies 

to regularize the solution is a suitable choice of parameterization. Depending on the parameterization strategy, 

the solution is searched in a space with certain features, for instance, smoothness, that may be convenient to 

the problem. Furthermore, a parameterization that can represent well the solution with a reduced number of 

parameters may be robust due to the limited number of degrees of freedom. Here we show an adaptive meshless 

parameterization methodology for full waveform inversion, which may also be useful for other inverse problems. 

The parameterization is based on a meshless technique and uses Wendland ’s functions as basis functions to an 

interpolation. As a meshless method, it is very flexible, then the spatial distribution of the unknowns can be 

non-uniform, allowing focusing on certain areas or automatically improving the quality of the image near the 

discontinuities of a velocity model. With some numerical experiments of acoustic inversion of synthetic data, we 

show that the parameterization methodology described here can represent complex velocity models and that, 

with a reduced number of unknowns, the inversion process behaves better than the standard parameterization 

with blocks. We also show that the adaptive meshless parameterization has a significant regularization effect, 

avoiding non-natural patterns and prioritizing smooth images. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Full waveform inversion is a technique to recover an image of the 

subsurface using data from a seismic survey. It is computationally ex- 

pensive because it is based on modeling of wave propagation. Although 

the first concepts of the technique were stated in the 80 ’s [1] , the pro- 

gressive improvement of computational resources made the technique 

viable. Nowadays, a lot of studies have contributed to this important 

and promising tool for exploration geophysics. 

It is well known that many aspects are involved in solving inverse 

problems. The algorithms can generate inaccurate solutions due to noise 

in data, sensitivity of different kinds of parameters, and rough param- 

eterization or over-parameterization. In this paper, parameterization 

means the description of a physical system by a set of m parameters 

[2] . 
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One of the regularization strategies is called multiscale inversion [3] . 

In this approach, from a smooth initial model, low-frequency compo- 

nents of data are inverted, generating an updated image. Then, such im- 

age is used as input to the same procedure, but with a higher frequency. 

This is repeated while the stop criterion is not reached. The multiscale 

approach can be considered a regularization strategy, since regulariza- 

tion means to give preference to models that reflect prior knowledge or 

expectation, ensuring the convergence towards physically meaningful 

models [4] . 

Moreover, regularization can be reached by choice of the parame- 

terization as long as the solution has features that depend on the cho- 

sen basis functions [4] . For instance, Debayle and Sambridge [5] have 

presented a parameterization based on cells generated by optimized 

Voronoy diagrams. Nolet [6] has proposed a minimum energy pa- 

rameterization based on blocks distributed non-uniformly depending 
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on the resolution expected for each region of the Earth. Wang et al. 

[7] have proposed refinement guidelines to discretize in different scales 

an inverse electrocardiographic problem, addressing the ill-posedness. 

Boehm and Ulbrich [8] have used different meshes for the model- 

ing and the parameter space for full waveform tomography because a 

coarser mesh in the parameter space prevents an over-parameterization. 

Furthermore, they combine regularization by discretization and multi- 

frequency inversion to achieve stability. Bangerth [9] presented an 

adaptive finite element solution to solve efficiently inverse problems in 

an all-at-once approach. The main feature of the methodology is the use 

of a continuous setting to allow discretizations that are adaptively re- 

fined as nonlinear iterations proceed. Peters and Barra [10] presented a 

method to parameterize the electrical impedance tomography problem, 

in which the parameters are the coordinates of control points and shape 

variables of X-splines. Valente et al. [11] have presented a methodol- 

ogy to solve the 3D wave equation using finite volumes in which space 

is discretized in a non-structured OcTree mesh [12] that allows better 

representation of the physical model regarding geometry and spatial dis- 

tribution of the wavelength, avoiding the excessive refinement required 

by structured meshes. 

A parameterization can use local or global basis functions to approx- 

imate the model. Local functions are defined non-null in their influ- 

ence region and are null outside the region. Global functions are defined 

throughout the entire model. For full waveform inversion, the use of lo- 

cal functions is suitable since sharp contrasts in physical properties are 

expected. Moreover, it is common to define one parameter for each un- 

known of the numerical method used to solve the forward problem [4] . 

However, in this case, the number of parameters can be enormous and, 

depending on the problem, making the inversion process much more 

computationally expensive. Furthermore, the model can have too much 

freedom to fit noise in data, increasing the instability of the inversion 

process [4] . In conclusion, the spatial discretization of the forward prob- 

lem depends on the stability criteria of the numerical method and the 

suitable representation of the physical properties. On the other hand, the 

parameterization depends on the resolution and the size of the structures 

that are expected to be resolvable. 

Therefore, we propose a parameterization methodology that deals 

with different degrees of freedom for the forward problem and inverse 

problem. This parameterization is based on a particular set of basis func- 

tions called Wendland ’s functions [13] . These functions can be used 

to generate 2D and 3D models with specific continuity classes, this is, 

smoothness levels. Each basis function has one basis point. To each ba- 

sis point, there is an associated parameter. The set of basis points is dis- 

tributed uniformly or non-uniformly in the model, as a cloud of points, 

which allows increasing the resolution in regions of interest. Moreover, 

in order to be able to represent the physical properties, the region influ- 

enced by each basis function must be larger than in the standard block 

parameterization. So, the meshless parameterization leads to a strong 

relation between two neighbor nodes because of the smooth interpola- 

tion function. A small change in a parameter affects a region larger than 

in block parameterization, increasing the stability of the solution. 

In order to avoid excessive smoothing near discontinuities of the 

physical model, we suggest a strategy that distributes the basis points 

non-uniformly. Such strategy is based on the “spring analogy ” [14] and 

tries to concentrate more unknowns near regions of interest. The dis- 

tribution follows a rule that takes into account, for each imaging fre- 

quency, the spatial variation of the wavelength. 

In this paper, we present some numerical experiments showing that 

the proposed parameterization is able to represent complex models of 

physical properties, generating images with high structural similarities 

with the true model. 

2. Methods 

Our main objective is to show that it is possible to generate suitable 

images using a number as small as possible of parameters. Depending on 

the problem, it could lead to the reduction of the required memory and 

the number of operations required. In the context of seismic inversion, 

any contribution in this issue is important in the case of 3D imaging and 

multiparameter inversion. Another feature is to increase the robustness 

of the inversion methodology because the use of a small number of de- 

grees of freedom can be a regularization strategy. On the other hand, the 

use of a limited number of parameters requires interpolation to generate 

velocity models, which can excessively smooth the interfaces between 

regions with different physical properties. 

Another point is related to the discretization required by the numeri- 

cal method to satisfy its stability criteria. Very often, such discretization 

is finer than that required by the image resolution. For example, some 

Finite Difference (FD) schemes need a grid spacing of 𝜆/5 or 𝜆/10, while 

the expected resolution of the imaging is 𝜆/2, where 𝜆 is the wavelength. 

So, the use of the same discretization for the forward and inverse prob- 

lem is an over-parameterization case and could lead to inappropriate so- 

lutions that can be improved by regularization strategies, like Tikhonov 

or total variation regularization. 

To make the discretization of the forward and inverse problem inde- 

pendent regarding the number of degrees of freedom and kind of mesh, 

we use a meshless parameterization. Then, the same parameters can be 

used to generate models of structured or unstructured meshes for dif- 

ferent numerical methods: Finite Differences [15] , Continuous or Dis- 

continuous Finite Elements [16] and coupled methods [17] . Moreover, 

the methodology is suitable to provide focus in a particular region even 

when the numerical method employs uniform meshes. 

Here we propose the use of a meshless parameterization with inter- 

polation based on a Wendland ’s basis function [13] . Such function seems 

to be very suitable for inverse problems because the only parameter is 

the radius of support. In the context of the multiscale approach, for each 

imaging frequency, we compute the number of parameters to be used. 

The section Adaptivity shows the procedure to change the number of 

parameters. 

Each parameter is related to a basis point. The basis points are dis- 

tributed all over the model. This distribution can be uniform or non- 

uniform. As we have mentioned, interpolation tends to smooth the in- 

terfaces or discontinuities of the velocity model. However, if we approxi- 

mate two basis points to the discontinuity, the smoothing is reduced and 

the image near the interface becomes better than when the points are far 

from the discontinuity. So, here we propose a methodology to spread the 

basis points based on an automatic identification of the interfaces. The 

idea is to concentrate more basis points near the interfaces, reducing the 

density of basis points over homogeneous areas. Here we propose the 

use of the “spring analogy method ” to guide the non-uniform distribu- 

tion of the basis points, what is explained in section “Spring Analogy ”. 

In order to analyze the benefits of the non-uniform meshless parame- 

terization, we compare three different strategies, summarized as follows: 

• Blocks: The classical constant by parts parameterization. All the 

blocks have the same size. 

• Uniform meshless: The parameterization is based on interpolation 

of Wendland ’s functions. The basis points of interpolation are uni- 

formly distributed. With this strategy, we expect to generate smooth 

velocity models. 

• Non-uniform meshless: Using the spring analogy, the basis points 

are distributed to be closer to the interfaces. With this strategy, we 

expect to avoid excessive smoothing of the interfaces when a reduced 

number of parameters is used. 

The following sections describe the numerical solution of the for- 

ward problem, the mapping between parameters and velocity model, 

the adaptivity and the spring analogy. 
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