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a b s t r a c t 

In this paper, singular boundary method (SBM) in conjunction with the dual reciprocity method (DRM) is ex- 

tended to the solution of constant and variable order time fractional diffusion equations (TFDEs). In this proce- 

dure, finite difference method breaks down the time domain and reduces the time fractional diffusion equation 

into a sequence of boundary value problems in inhomogeneous Helmholtz-type equations. Then SBM-DRM is 

applied to space semi-discretization of these types of equations, in a two step process. First, DRM, which is a 

popular meshless method based on radial basis functions (RBFs), is applied to obtain the particular solution. Af- 

ter evaluating the particular solution, singular boundary method can be employed to evaluate the homogeneous 

solution. To consider the accuracy and efficiency of the presented method, some benchmark problems subjected 

to the Dirichlet and Neumann boundaries are examined on regular and irregular geometries. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Anomalous diffusion phenomena which spreadingly emerged in dif- 

ferent branches of science and engineering, such as human brain [43] , 

contaminant transport [2] and polymer network [1] , can be described 

and modeled well off by fractional diffusion equations. Recent studies 

show that constant order fractional diffusion equations cannot thor- 

oughly describe some diffusion phenomena which have more sophis- 

ticated diffusional behavior varying according to the variation in time 

or space or even concentration variations [3,35] . As a result, fractional 

diffusion equations with the variable orders were proposed as a new 

achievement to deal with such issues in which the variable order frac- 

tional derivative is time dependent, spatial dependent or concentration 

dependent [34,36] . Due to the usage of these equations in real world 

problems and the difficulties to solve them with analytical methods, 

improving and spreading numerical methods to solve them can have a 

crucial role in describing real objects such as anomalous phenomena 

more accurately. 

Time discretization with the use of finite difference method (FDM) 

is a common method in solving fractional diffusion equations with the 

constant and variable order. To simulate the space, mesh-based meth- 

ods such as finite difference method [14] , finite element method (FEM) 

[24] and boundary element method (BEM) [25] , as well as kernel based 

methods with coordinate kernel functions such as Fourier method [4] , 
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spectral method [28] and wavelets method [12] are largely used. Al- 

though both methods are suitable for small and simple domains but they 

are computationally expensive for problems with high dimensions and 

irregular geometric domain. 

In contrast to the mentioned methods, recently, meshless methods 

with radial basis functions on account of their dimensionality indepen- 

dent and avoidance troublesome mesh generation for high dimensional 

problems have grabbed the growing attention from a broad range of sci- 

entific computing especially in solving constant and variable order frac- 

tional differential equations [5,7,11,18,21–23] . Method of fundamental 

solution (MFS) is one of the RBF-kind and effectual meshless boundary 

collocation method. In the MFS, the main idea is to take the funda- 

mental solutions as the function approximation and place the source 

points on the auxiliary boundary outside the physical boundary to reg- 

ulate the singularity of the fundamental solutions [26] . Although the 

MFS along with being meshless, integration-free and highly accurate 

has drawn the growing attention in various fields of science and engi- 

neering [15,16,40,42] , determining the optimal location of the auxiliary 

boundary, especially for problems with complex geometries, is still an 

open issue. This drawback makes this method less applicable for real 

world problems. 

In contrary to MFS, SBM, which is a relatively new developed 

technique [8,9] , figures out the troublesome placement of the ficti- 

tious boundary concerned with the traditional MFS by introducing the 
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concept of the origin intensity factors which makes feasible that the 

source points to be positioned on the real physical boundary coincid- 

ing with the collocation points, while retaining the merits of being truly 

meshless, integration-free, mathematically simple and easy to program 

in modeling diverse problems with complicated geometries. To develop 

the method, subtracting and adding-back technique as well as an inverse 

interpolation technique are used to determine the origin intensity fac- 

tors to isolate the source singularity of the fundamental solutions and 

their derivatives regarding Dirichlet and Neumann boundaries, respec- 

tively. Based on the numerical experiments, SBM has achieved many 

successes in many engineering problems such as elastic and viscoelastic 

wave problems [37] , Stokes flow [33] , acoustic [17] , heat conduction 

[38] , elasticity [20] , Helmholtz [9] , potential [8,39] and transient dif- 

fusion problem [10] . 

This paper is intended to extend singular boundary method to solve 

both constant and variable order time fractional diffusion equation in 

two-dimensional space. In this paper, first, finite difference method de- 

composes the time domain and approximates fractional derivative term, 

so that the time fractional diffusion equation is reduced to a sequence of 

boundary value problems in inhomogeneous Helmholtz-type equations. 

It is well known that, SBM similar to the other boundary type methods 

such as BEM and MFS is limited to solve just homogeneous equations. 

Therefore, in dealing with nonhomogeneous problems, we require to 

combine it with some other techniques. In this paper, we will combine 

SBM with DRM which was first introduced by Nardini [30] and has been 

successfully applied in combination with BEM and MFS [27,30,31] to 

obtain the particular solution. After evaluating the particular solution, 

SBM can be employed to evaluate the homogeneous solution. Finally, 

the real solution of the problem can be obtained by adding the homo- 

geneous solution to the particular solution. Therefore, combining SBM 

and DRM, a meshless numerical technique is obtained to solve inhomo- 

geneous and time-dependent problems. 

The rest of the paper is put in order as follows. In Section 2 , the 

basic equations of constant and variable order fractional diffusion prob- 

lems are briefly introduced, followed by the complete explanation of the 

DRM and SBM approximation. In Section 3 , we present several numeri- 

cal experiments compared with the analytical solutions to illustrate the 

validity and efficiency of the presented method. Finally, in Section 4 , 

some conclusions are provided upon the results reported in this study. 

2. Mathematical implementation 

2.1. Problem definition 

In this study, a numerical investigation would be given to approxi- 

mate the solution of the two-dimensional time fractional diffusion equa- 

tions over a computational domain Ω ⊂ ℝ 

2 that is enclosed by a bound- 

ary Γ as follows: 

𝐷 

𝛼( 𝑡 ) 
𝑡 

𝑢 ( x , 𝑡 ) = 𝐴 Δ𝑢 ( x , 𝑡 ) − 𝜆𝑢 ( x , 𝑡 ) + 𝑓 ( x , 𝑡 ) , 0 < 𝛼( 𝑡 ) < 1 , 

x ∈ Ω, 𝑡 ∈ (0 , 𝑇 ) , (1) 

where the symbol Δ denotes the Laplacian operator, A the diffusion co- 

efficient and 𝜆 is the reaction coefficient. The initial condition of the 

problem is 

𝑢 ( x , 0) = 𝑢 0 ( x ) , x ∈ Ω, (2) 

with the Dirichlet and Neumann boundary conditions 

𝑢 ( x , 𝑡 ) = 𝑔( x , 𝑡 ) , x ∈ Γ𝐷 

, 𝑡 ∈ (0 , 𝑇 ) , (3) 

𝑞( x , 𝑡 ) = ℎ ( x , 𝑡 ) , x ∈ Γ𝑁 

, 𝑡 ∈ (0 , 𝑇 ) , (4) 

in which ΓD and ΓN stand for the parts of the boundary Ω where 

the Dirichlet and Neumann boundary conditions are prescribed; 𝑓 ( x , 𝑡 ) , 
𝑔( x , 𝑡 ) , ℎ ( x , 𝑡 ) and 𝑢 0 ( x ) are known functions, 𝑞( x , 𝑡 ) = 

𝜕𝑢 ( x ,𝑡 ) 
𝜕𝑛 

and n is the 

outward unit vector on the boundary ΓN . Moreover, 𝐷 

𝛼( 𝑡 ) 
𝑡 

𝑢 ( x , 𝑡 ) repre- 

sents the variable order fractional derivative of order 𝛼( t ) which is con- 

sidered as a function taking values in the open interval (0, 1). Among 

the definitions which exist for variable order fractional differential equa- 

tions, we adopt the definition suggested by Coimbra [13] : 

𝐷 

𝛼( 𝑡 ) 
𝑡 

𝑢 ( x , 𝑡 ) = 

1 
Γ(1 − 𝛼( 𝑡 )) ∫

𝑡 

0 

𝜕𝑢 ( x , 𝜉) 
𝜕𝜉

𝑑𝜉

( 𝑡 − 𝜉) 𝛼( 𝑡 ) 

+ 

( 𝑢 ( x , 𝑡 0+ ) − 𝑢 ( x , 𝑡 0− )) 𝑡 − 𝛼( 𝑡 ) 

Γ(1 − 𝛼( 𝑡 )) 
, (5) 

because it only uses the integer order derivatives in the initial condi- 

tion which can be simply applied in physical fields. In addition, if u is 

a continuous function, this definition can be viewed as the following 

Caputo-type definition: 

𝐷 

𝛼( 𝑡 ) 
𝑡 

𝑢 ( x , 𝑡 ) = 

1 
Γ(1 − 𝛼( 𝑡 )) ∫

𝑡 

0 

𝜕𝑢 ( x , 𝜉) 
𝜕𝜉

𝑑𝜉

( 𝑡 − 𝜉) 𝛼( 𝑡 ) 
. (6) 

So, if 𝛼( t ) is taken to be constant, this definition is reduced to the Caputo 

derivative definition [32] . 

2.2. Temporal discretization of TFDEs 

Herein, the variable order time fractional derivative is approximated 

by the finite difference method. Let 𝑡 𝑘 = 𝑘𝜏, 𝑘 = 0 , 1 , ..., 𝐾, where 𝜏 = 

𝑇 

𝐾 

is the time step size and suppose 𝑢 ( x , 𝑡 ) ∈ 𝐶(Ω, (0 , 𝑇 )) . The time variable 

order fractional derivative 𝐷 

𝛼( 𝑡 ) 
𝑡 

𝑢 ( x , 𝑡 ) at 𝑡 𝑘 +1 can be discretized as: 

𝐷 

𝛼( 𝑡 𝑘 +1 ) 
𝑡 

𝑢 ( x , 𝑡 𝑘 +1 ) = 

1 
Γ(1 − 𝛼( 𝑡 𝑘 +1 )) ∫

( 𝑘 +1) 𝜏

0 

𝜕𝑢 ( x , 𝜉) 
𝜕𝜉

𝑑𝜉

( 𝑡 𝑘 +1 − 𝜉) 𝛼( 𝑡 𝑘 +1 ) 

= 

1 
Γ(1 − 𝛼( 𝑡 𝑘 +1 )) 

𝑘 ∑
𝑗=0 

𝑢 ( x , 𝑡 𝑗+1 ) − 𝑢 ( x , 𝑡 𝑗 ) 
𝜏

×∫
( 𝑗+1) 𝜏

𝑗𝜏

1 
( 𝑡 𝑘 +1 − 𝜉) 𝛼( 𝑡 𝑘 +1 ) 

𝑑𝜉

= 

𝜏− 𝛼( 𝑡 𝑘 +1 ) 

Γ(2 − 𝛼( 𝑡 𝑘 +1 )) 

𝑘 ∑
𝑗=0 

𝑏 𝑘 
𝑗 
[ 𝑢 ( x , 𝑡 𝑘 +1− 𝑗 ) − 𝑢 ( x , 𝑡 𝑘 − 𝑗 )] 

= 𝑎 𝑘 [ 𝑢 ( x , 𝑡 𝑘 +1 ) − 𝑢 ( x , 𝑡 𝑘 ) + 

𝑘 ∑
𝑗=1 

𝑏 𝑘 
𝑗 
[ 𝑢 ( x , 𝑡 𝑘 − 𝑗+1 ) 

− 𝑢 ( x , 𝑡 𝑘 − 𝑗 )]] , (7) 

where 

𝑎 𝑘 = 

𝜏− 𝛼( 𝑡 𝑘 +1 ) 

Γ(2 − 𝛼( 𝑡 𝑘 +1 )) 

𝑏 𝑘 
𝑗 
= ( 𝑗 + 1) 1− 𝛼( 𝑡 𝑘 +1 ) − 𝑗 1− 𝛼( 𝑡 𝑘 +1 ) , 𝑗 = 0 , ⋯ , 𝐾 − 1 . (8) 

We assume that 𝑢 𝑘 +1 ( x ) is an approximation of 𝑢 ( x , 𝑡 𝑘 +1 ) . By sub- 

stituting (7) into (1) and rearranging the terms, we derive the follow- 

ing Helmholtz type equations at each time step 𝑡 𝑘 +1 with the unknown 

𝑢 𝑘 +1 : 

(Δ − 𝜇2 ) 𝑢 𝑘 +1 = 𝐹 

𝑘 +1 𝑘 = 0 , ⋯ , 𝐾 − 1 
𝑢 𝑘 +1 = ℎ 𝑘 +1 on Γ𝐷 

, 

𝑞 𝑘 +1 = 𝑔 𝑘 +1 on Γ𝑁 

, 

(9) 

where 𝜇 = 

√
( 𝜆 + 𝑎 𝑘 )∕ 𝐴 and 𝐹 

𝑘 +1 = 

1 
𝐴 
( 
∑𝑘 

𝑗=1 𝑎 
𝑘 𝑏 𝑘 

𝑗 
( 𝑢 𝑘 − 𝑗+1 − 𝑢 𝑘 − 𝑗 ) − 𝑎 𝑘 𝑢 𝑘 + 

𝑓 𝑘 +1 ) . 
Therefore, by removing the time dependence, problem (1) is turned 

into a series of inhomogeneous modified Helmholtz equations of the 

second kind. 

2.3. SBM-DRM for spatial discretization 

In this section, to extend the singular boundary method (SBM) to 

inhomogeneous Eq. (9) , the dual reciprocity method (DRM) will be em- 

ployed to evaluate the particular solution of the given inhomogeneous 
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