Applied Soft Computing 11 (2011) 4366-4383

journal homepage: www.elsevier.com/locate/asoc

Contents lists available at ScienceDirect

Applied Soft Computing

Applied

tin

Can a good offense be a good defense? Vulnerability testing
of anomaly detectors through an artificial arms race

Hilmi Giines Kayacik®*, A. Nur Zincir-HeywoodP, Malcolm I. Heywood ®

a Carleton University, School of Computer Science, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
b Dalhousie University, Faculty of Computer Science, 6050 University Avenue, Halifax, NS B3H 1W5, Canada

ARTICLE INFO ABSTRACT

Article history:

Received 28 April 2010

Received in revised form 3 August 2010
Accepted 28 September 2010

Available online 14 October 2010

Intrusion detection systems, which aim to protect our IT infrastructure are not infallible. Attackers take
advantage of detector vulnerabilities and weaknesses to evade detection, hence hindering the effective-
ness of the detectors. To do so, attackers generate evasion attacks which can eliminate or minimize the
detection while successfully achieving the attacker’s goals. This work proposes an artificial arms race

between an automated ‘white-hat’ attacker and various anomaly detectors for the purpose of identifying

Keywords:

Computer security
Intrusion detection
Evasion attacks
Genetic Programming
Arms race

detector weaknesses. The proposed arms race aims to automate the vulnerability testing of the anomaly
detectors so that the security experts can be more proactive in eliminating detector vulnerabilities.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Anintrusion detection system (IDS) is a combination of software
and hardware that collects and analyses data from networks and
hosts to determine if there is an attack [1] and possibly react to it as
in the case of intrusion prevention systems [2]. Different detection
techniques can be employed to search for evidence of intrusions. To
this end, two major categories exist for detection techniques: mis-
use and anomaly detection. Misuse detection systems use a priori
knowledge on attacks to look for traces of attacks. In other words,
they detect intrusions by employing a description of the misuse [3].
On the other hand, anomaly detectors adopt the opposite approach,
which s, to know what is normal, and then find the deviations from
normal behavior. These deviations are considered as anomalies or
possible intrusions. Anomaly detection systems rely on knowledge
of normal behavior to detect attacks.

Naturally, intrusion detection systems are by no means infalli-
ble. Software vulnerabilities and hardware faults can cause them
to misclassify or malfunction. In addition to traditional software
errors, detectors are also susceptible to detector-specific vulner-
abilities such as misconfigurations, blind-spots and deficiencies
in detection methodology. Sophisticated attackers try to deploy
attacks without getting detected. To this end, they may make

* Corresponding author.
E-mail addresses: kayacik@ccsl.carleton.ca (H.G. Kayacik), zincir@cs.dal.ca
(A.N. Zincir-Heywood), mheywood@cs.dal.ca (M.I. Heywood).

1568-4946/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.as0c.2010.09.005

use of detector vulnerabilities to alter their actions thus evading
detection, rendering the detector ineffective. Although the evasion
methodologies vary, the main objective of the attacker is to alter the
attack so that it does not trigger signatures or generate anomalous
behavior, while carrying out the attacker’s goals.

In this work, we propose an arms race between artificial ‘white-
hat’ attackers and candidate detectors. By ‘white-hat’ we imply
an automated process for vulnerability testing (attack generation)
without access to private information regarding the detector archi-
tecture. Feedback from the detector is limited to public information
that a legitimate user might expect to receive; such as alarms. Such
a scenario implies that we could deploy the same generic white-
hat approach to any number of different detector architectures.
Relative to the previous approaches discussed in Section 2, this
means that we make extensive use of heuristic search - in this
case Genetic Programming - to conduct the search for vulnerabili-
ties under the guise of general objectives of an attack. Conversely,
previous researchers made strong assumptions regarding the oper-
ation of specific detector architectures and face limitations on the
subset of detectors they may evaluate (see [4] for a performance
comparison between the two general approaches). We note that
this work provides an empirical evaluation of an automated tech-
nique for vulnerability testing. Developing a theoretical model for
testing detectors is beyond the scope of this work.

The proposed Evolutionary Exploit Generator (EEG) makes two
assumptions (Section 3). There is a common goal of an attack - in
this case adding the user to the root login file - and the system
calls of the target application may be profiled. Given that the target


dx.doi.org/10.1016/j.asoc.2010.09.005
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:kayacik@ccsl.carleton.ca
mailto:zincir@cs.dal.ca
mailto:mheywood@cs.dal.ca
dx.doi.org/10.1016/j.asoc.2010.09.005

H.G. Kayacik et al. / Applied Soft Computing 11 (2011) 4366-4383 4367

applications take the form of generic Linux applications, such infor-
mation can be collected without accessing privileged information
from the application itself. We use the set of most common appli-
cation system calls to define the instruction set for GP. The fitness
function is expressed as a multi-criteria objective rewarding alarm
rate minimization, correct formulation of an exploit and - in the
case of the more sophisticated detectors — delay minimization.

The basic EEG framework represents a generic framework for
designing buffer overflow style attacks, where this represents a
major class of intrusions [5]. However, in order to be effective, users
need to be clear regarding what the concept of an attack represents,
particularly with respect to the relative contributions of preamble
and exploit to the construction of an attack (Section 3). With the
nature of buffer overflow attacks established, we then introduce
the vulnerable applications and the corresponding set of candidate
detectors on which benchmarking will later be performed (Section
4).

The following benchmarking study emphasizes three themes
(Section 5). Firstly it is important to evolve attacks with the pream-
ble included. Earlier works have tended to ignore the contribution
of this entirely and make the mistaken claim that detectors can
be avoided with zero anomaly rate. Secondly, the delay mecha-
nisms embedded in some detectors (i.e., the IDS is able to react
to potential intrusions by delaying the running process) has the
capacity to render all the original attack variants, and all but one
EEG attack, ineffective; again as a consequence of the contribution
of the preamble. Finally, we are able to characterize the strategies
used by EEG to obfuscate the true intent of an attack, with different
strategies clearly being adopted depending on the detector against
which EEG is deployed.

Section 6 brings these findings together and in doing so rec-
ognizes that a major factor in the most successful attack is the
corresponding succinctness of the preamble. That is to say, the finite
size of the vulnerable buffers may enforce system call quotas in
which the attack must be expressed. Consequently, if the preamble
is short, then the corresponding relative contribution of the exploit
component of an attack (the part the attacker has most control over)
has much more impact on the overall alarm rate. Thus the relative
count of instructions that do not conform to the normal application
behavior profile is much lower. Naturally attacks with lengthy and
anomalous preambles will be next to impossible to obfuscate.

2. Related work

Earlier works in vulnerability analysis make extensive use of
knowledge regarding the internal design of the detector, with the
emphasis being directed purely at the exploit. Wagner and Soto
[6] investigated an approach to alter the system call sequences
of an attack in order to render it undetectable to a specific IDS,
namely Stide. Given a minimum sequence of malicious system
calls to support execution of a successful attack - the core attack
- their goal was to find other sequences of system calls that avoid
detection by the target IDS yet still achieve the objective of the
core attack. This was achieved by manually adding system calls
that have no effect on the success of the attack. Similarly, Tan
et al. [7] aimed to undermine the anomaly based IDS Stide [8] by
identifying weaknesses and modifying the malicious system call
sequences to exploit these limitations. To do so, they first modified
the attack by hand to change the ownership of a critical file. Sec-
ondly, they inserted system calls from data characterizing normal
behavior into the malicious system call sequence. Vigna et al. [9]
described a methodology to generate variations of an attack to test
the quality of detection signatures of Snort. Stochastic modification
of attack code was employed to generate variants of attacks to ren-
der the attack undetectable. Techniques such as packet splitting,

evasion and polymorphic shellcode were discussed. Kruegel et al.
[10] developed a static analysis tool for Intel x86 binaries in order
to automatically identify instructions that can be used to redirect
control flow. They use symbolic execution to achieve this. Giffin
et al. generated mimicry attacks against Stide by applying auto-
matic model checking to prove that no reachable operating system
configuration corresponds to the effect of an attack [11]. However,
in their approach, the operating system model, application (pro-
gram) model and system call specifications as well as the attack
configuration are still generated manually.

On the other hand, our work contributes to the existing work
on evasion attacks in two ways. Firstly, our approach represents
an arms race between various anomaly detectors and artificial
‘white-hat’ attackers i.e., the Evolutionary Exploit Generator (EEG)
framework. The arms race rewards the attacker as it builds success-
ful attacks, which can defeat the target detector. In such an arms
race, the detector responds to attacks by providing feedback from
the detector in the form of anomaly rates or other detection infor-
mation such as the nature of dynamic measures deployed against
an attack (delays). Consequently, the attacker utilizes the detection
feedback to build evasion attacks, which achieve the objectives of
the attacker while minimizing the detection from the target detec-
tor. The main result of the arms race is a set of evasion attacks,
which can evade the target detector. The resulting attacks provide
the defenders with crucial information that can be utilized to elim-
inate the weaknesses of the target detector. Needless to say, the
exploits produced are entirely a result of the Evolutionary Exploit
Generator with no hand crafting of the exploits.

Second, the previous work [6,7] assumed that the attacker can
take control of the vulnerable application silently i.e., no consider-
ation was given to the contribution of the preamble (Section 3.1)
to attack detection. By contrast, in this work, we acknowledge that
evasion attacks against anomaly detectors may not be as easy to
perform in practice due to the attacker’s lack of control over the
system calls executed before the attacker’s shellcode is invoked.
Indeed, it readily becomes apparent that only when the preamble
component of an attack contributes a significantly lower propor-
tion of the attack code is it possible to evade the more sophisticated
detectors (Section 5). We are also able to demonstrate that as the
target detector changes, the composition of the attack controlled by
EEG undergoes a significant change, implying that different detec-
tors do have rather different implicit weaknesses.

3. Evolving buffer overflow attacks

In this section, the EEG framework is introduced to evolve
attacks for analyzing vulnerabilities of detectors along with a brief
discussion of buffer overflow attacks. Furthermore, we discuss the
relevant work employing similar arms race methodologies for other
attack types, although this work focuses on buffer overflow attacks.

3.1. Generic design decisions of a buffer overflow attack

In a typical buffer overflow exploit, the first step is to corrupt
the data types and local variables, which gives the attacker control
of the application. For example, in case of the original ftpd attack
against wu-ftpd server [12], the attacker achieves this by logging
onto the ftpd server anonymously and issuing malformed com-
mands such as CWD ~ {. The actions taken by the attackers before
they gain full control of the application are called the preamble.
During the preamble phase, the application is still operational and
the attacker does not have full control yet, hence the attacker may
not be able to prevent the vulnerable application from generating
anomalous behavior.



Download English Version:

https://daneshyari.com/en/article/496598

Download Persian Version:

https://daneshyari.com/article/496598

Daneshyari.com


https://daneshyari.com/en/article/496598
https://daneshyari.com/article/496598
https://daneshyari.com/

