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a b s t r a c t 

In this paper we tackle the simulation of microstructured materials modelled as heterogeneous Cosserat media 

with both perfect and imperfect interfaces. We formulate a boundary value problem for an inclusion of one plane 

strain micropolar phase into another micropolar phase and reduce the problem to a system of boundary integral 

equations, which is subsequently solved by the boundary element method. The inclusion interface condition 

is assumed to be imperfect, which permits jumps in both displacements/microrotations and tractions/couple 

tractions, as well as a linear dependence of jumps in displacements/microrotations on continuous across the 

interface tractions/couple traction (model known in elasticity as homogeneously imperfect interface ). These features 

can be directly incorporated into the boundary element formulation. 

The BEM-results for a circular inclusion in an infinite plate are shown to be in an excellent agreement with the 

analytical solutions. The BEM-results for inclusions in finite plates are compared with the FEM-results obtained 

with FEniCS. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

This paper presents the first application and verification of the 

boundary element method to simulate the mechanical effects of inclu- 

sions with imperfect interfaces in plane micropolar elasticity. 

Modern nano-technological applications such as sensors and actu- 

ators, microelecromechanical systems, electronic packaging, advanced 

nano-composites call for efficient approaches to model the mechanical 

behavior of micro and nano-structured materials. Atomistic simulations 

are one way forward, but these are extremely computationally expen- 

sive 1 , such that multi-scale approaches are required e.g. see [2] . One 

approach to account for the multi-scale nature of materials is to build 

continuum scale constitutive theories able to reproduce the continuum 

behavior of such nano/micro-structured materials, see e.g. [3] for an 

account of continuum models of micro-structured materials. The mi- 

cropolar theory is one such approach, which we use in this paper. 

∗ Corresponding author. 

E-mail address: eatroshchenko@ing.uchile.cl (E. Atroshchenko). 
1 Some estimates claim that it will be 80 years before the failure of one cubic centimeter 

of metal can be simulated using such approaches [1] . 

Micropolar (also known as Cosserat) elasticity was first introduced 

by the Cosserat brothers [4] and further developed by Eringen [5] , 

Nowacki [6] , Eremeyev [7] etc., and it is able to account for the rotation 

of individual material points (differential elements). This leads to the de- 

scription of a deformed state in terms of asymmetric stress and couple 

stress tensors. It was shown that micropolar constitutive models, in spite 

of being a continuum model, are able to replicate the experimentally- 

observed behavior of natural or engineered materials possessing micro 

or nano structures [3] such as bone [8–11] , fibre-reinforced composites 

[12–14] , blocky and layered materials, such as rock and rock masses 

[15–17] , cellular materials [18,19] and many others. 

The problem of (imperfect) interfaces (also known as interphases) in 

Cosserat matter was scarcely addressed [20] , whilst it was much more 

intensively modelled and simulated in the context of standard linear 

elasticity, with or without surface effects, see e.g. [21–26] for imple- 

mentation aspects. It is however interesting to note that Cosserat ma- 

terials have been themselves used to model the mechanical effects of 

such interphases within heterogeneous materials, as discussed in depth 

in recent literature [27,28] . 
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Due to the rapid development of composite materials for advanced 

engineering applications, the problem of quantifying the effects of het- 

erogeneities is crucially important, in particular in cases where the in- 

terfaces between the bulk/matrix and the inclusions are imperfect or 

carry surface energy. 

The effects of heterogeneities/inhomogeneities have been studied 

well within the confines of Cauchy continua (classical elasticity), both 

analytically and numerically, starting from the classical Muskhelishvili ’s 

problem of a circular inclusion in an infinite plate [29] to the finite 

and boundary element analysis of multiple inclusions of various shapes, 

see for example [30–32] and crack/inclusion interactions, e.g. [33] and 

more recently [34] . 

In Cosserat elasticity, however, less work has been done and much 

remains to be understood about Cosserat-heterogeneous materials. Such 

efforts date back to 1976 with the work of [35] . In the 1990s significant 

work has been done on Cosserat-heterogeneous materials to study the 

effects of inclusions [36] and compute homogenized properties and their 

bounds and to understand their asymptotic behavior [37–39] . An inter- 

esting result of [39] is that if 𝓁 is the size of the Cosserat-heterogeneities, 

𝓁 c the Cosserat intrinsic length scales and L the size of the material sam- 

ple, 𝓁 ≈𝓁 c ≪ L leads to a Cauchy continuum, whereas if 𝓁 c ≈ L then, the 

effective (homogenized) medium is better approximated by a Cosserat 

material. 

More recently, work on Cosserat-heterogeneous materials has inten- 

sified somewhat with the work of [40] , who provides analytical solu- 

tions in plane strain and [27,28] who focus on the modelling of inter- 

phases in heterogeneous materials by a non-linear Cosserat material. 

A number of analytical and numerical methods have been developed 

to treat boundary value problems of micropolar elasticity. The finite 

element method remains the most common tool of numerical analysis 

[41–45] . 

Recently, the boundary element method [46] and [47] has been 

emerging as a powerful alternative due to its advantage in treating prob- 

lems with non-smooth boundaries and infinite domains. For example, in 

[46] the dual boundary element method was applied to crack problems 

in plane strain micropolar continua. 

One of the advantages of using boundary elements for inclusion 

problems, is the ability to incorporate the model of imperfect inter- 

faces directly into the boundary integral formulation, keeping the lin- 

ear formulation of the problem, while in the case of finite element 

method such interface model would make the formulation nonlinear. 

In this work we use the simple imperfect interface model, known as 

homogeneously imperfect interface , which is characterised by tractions 

and couple traction being continuous across the interface, and propor- 

tional to the jumps in displacements and out-of-plane microrotation. 

This model, for a circular inclusion in a plate subjected to uni-axial ten- 

sion was investigated analytically in [48] with the full solution available 

in [49] . 

Another imperfect interface model, used in this work, is character- 

ized by arbitrary jumps in both surface tractions/couple traction, as 

well as in displacements and out-of-plane microration. Physically, such a 

model allows to impose more general boundary conditions, while math- 

ematically it brings additional advantages for the problems in infinite 

domain, because it enables to significantly reduce the size of the prob- 

lem by transferring the boundary conditions at infinity to the boundary 

conditions on the inclusion interface. 

In this paper we develop a system of boundary integral equations for 

an inclusion problem in plane micropolar and solve it by the boundary 

element method. We show the excellent agreement of the BEM-results 

with the analytical and FEM-solutions. We present the BEM-study of 

micropolar effects on inclusions of various shapes under various loading 

conditions. We demonstrate the dependence of the stress concentration 

factors on material parameters, including the limiting cases, when one 

material is nearly classical, while the second one is strongly micropolar. 

These parametric studies give a deeper insight into the mechanics of 

micropolar inhomogeneities. The developed solutions can also serve as 

benchmark problems for further use with other analytical and numerical 

methods. 

The paper is organized as follows. In chapter 2 we formulate the 

boundary value problem of an inclusion in micropolar plane strain. In 

chapter 3 we derive the system of boundary integral equations. In chap- 

ter 4 we briefly outline the boundary element method procedure. Nu- 

merical results are given in chapter 5, while chapter 6 contains discus- 

sion of the results and directions of future work. 

2. Mathematical formulation of an inclusion problem 

According to [5] , a plane strain deformation of a micropolar material 

is described by two in-plane displacements 𝑢 1 = 𝑢 1 ( 𝒙 ) , 𝑢 2 = 𝑢 2 ( 𝒙 ) and 

one out-of-plane microrotation 𝜙3 = 𝜙3 ( 𝒙 ) , where 𝒙 = ( 𝑥 1 , 𝑥 2 ) , which we 

combine into one vector of generalized displacements: 𝒖 = ( 𝑢 1 , 𝑢 2 , 𝑢 3 ) 𝑇 
with 𝑢 3 = 𝜙3 . In absence of body forces and couples, the equations of 

equilibrium for a material described by parameters 𝜆, 𝜇, 𝜅 and 𝛾 can be 

written as 

𝐿 ( 𝜕 𝑥 ) 𝒖 = 0 , (1) 

where the matrix differential operator 𝐿 ( 𝜕 𝑥 ) = 𝐿 ( 𝜉𝛼) is given in [50] , 

[51] as 

𝐿 ( 𝜉𝛼) = 

⎛ ⎜ ⎜ ⎝ 
( 𝜆 + 𝜇) 𝜉2 1 + ( 𝜇 + 𝜅)Δ ( 𝜆 + 𝜇) 𝜉1 𝜉2 𝜅𝜉2 

( 𝜆 + 𝜇) 𝜉1 𝜉2 ( 𝜆 + 𝜇) 𝜉2 2 + ( 𝜇 + 𝜅)Δ − 𝜅𝜉1 
− 𝜅𝜉2 𝜅𝜉1 𝛾Δ − 2 𝜅

⎞ ⎟ ⎟ ⎠ , (2) 

with 𝜉𝛼 = 𝜕 ∕ 𝜕 𝑥 𝛼 and Δ = 𝜕 2 ∕ 𝜕 𝑥 2 1 + 𝜕 2 ∕ 𝜕 𝑥 2 2 = 𝜉2 1 + 𝜉2 2 . 

Two tractions 𝑡 1 = 𝑡 1 ( 𝒙 ) , 𝑡 2 = 𝑡 2 ( 𝒙 ) and one couple-traction 𝑡 3 = 𝑡 3 ( 𝒙 ) , 
defined on a boundary with normal 𝒏 = ( 𝑛 1 , 𝑛 2 ) 𝑇 , are also combined into 

vector 𝒕 = ( 𝑡 1 , 𝑡 2 , 𝑡 3 ) 𝑇 . By the standard definition 

𝑡 𝛼 = 𝜎𝛽𝛼𝑛 𝛽 , 𝑡 3 = 𝑚 𝛽3 𝑛 𝛽 , 𝛼, 𝛽 = 1 , 2 . (3) 

where 𝜎11 , 𝜎12 , 𝜎21 , 𝜎22 are components of the asymmetric micropolar 

stress tensor and m 13 , m 23 are the couple-stresses. 

Together with L ( 𝜉𝛼) the boundary stress operator 𝑇 ( 𝜕 𝑥 ) = 𝑇 ( 𝜉𝛼) is 
considered [50] , which is defined by the following equation: 

𝑇 ( 𝜉𝛼) = ⎛ ⎜ ⎜ ⎝ 
( 𝜆 + 2 𝜇 + 𝜅) 𝜉1 𝑛 1 + ( 𝜅 + 𝜇) 𝜉2 𝑛 2 𝜆𝜉2 𝑛 1 + 𝜇𝜉1 𝑛 2 𝜅𝑛 2 

𝜇𝜉2 𝑛 1 + 𝜆𝜉1 𝑛 2 ( 𝜇 + 𝜅) 𝜉1 𝑛 1 + ( 𝜆 + 2 𝜇 + 𝜅) 𝜉2 𝑛 2 − 𝜅𝑛 1 
0 0 𝛾𝜉𝛼𝑛 𝛼

⎞ ⎟ ⎟ ⎠ 
(4) 

Operator T ( 𝜕 x ) is defined according to the stress strain relations and the 

constitutive equations, as given in [5] in such a way that 

𝒕 = 𝑇 ( 𝜕 𝑥 ) 𝒖 . (5) 

Together with constants 𝜆, 𝜇, 𝛾, 𝜅, we use engineering constants: G 

(shear modulus), 𝜈 (Poisson ’s ratio), 𝓁 (characteristic length) and N (cou- 

pling number), defined in [8] . 

We consider a bounded inclusion occupying the domain S i with the 

boundary 𝜕S i and inner normal 𝑛 as shown in Fig. 1 . The inclusion is 

made of homogeneous and isotropic micropolar material with elastic 

constants 𝜆i , 𝜇i , 𝜅 i , 𝛾 i . The matrix, which occupies domain S e is also ho- 

mogeneous and isotropic micropolar material with elastic constants 𝜆e , 

𝜇e , 𝜅e , 𝛾e . The engineering material parameters, describing the inclusion 

or the matrix are denoted as G 

i , 𝜈i , 𝓁 i , N 

i or G 

e , 𝜈e , 𝓁 e , N 

e respectively. 

Let L i ( 𝜕 x ) and L e ( 𝜕 x ) be the operator L ( 𝜕 x ) with constants 𝜆i , 𝜇i , 𝜅 i , 𝛾 i 

and 𝜆e , 𝜇e , 𝜅e , 𝛾e respectively. The boundary stress operators T i ( 𝜕 x ) and 

T e ( 𝜕 x ) are defined analogously. The displacement vector in domain S i is 

denoted as u i , in domain S e as u e . The boundary tractions are defined as 

𝒕 𝑖 = 𝑇 𝑖 ( 𝜕 𝑥 ) 𝒖 𝑖 , 𝒕 𝑒 = 𝑇 𝑒 ( 𝜕 𝑥 ) 𝒖 𝑒 . (6) 
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