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In this study, combining the boundary integral equations (BIEs) with the complex variable moving least squares 

(CVMLS) approximation, a symmetric and boundary-only meshless method, the complex variable Galerkin bound- 

ary node method (CVGBNM), is developed. Numerical applications and theoretical error estimates of the CVGBNM 

are derived for BIEs, potential problems and Stokes problems. Finally, numerical examples are given to demon- 

strate the efficacy of the method. 
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1. Introduction 

Over the past half century, the numerical solutions of many physics 
and engineering problems have been dominated by mesh-based meth- 
ods such as the finite element methods and the boundary element meth- 
ods (BEMs). In these methods, the approximation of unknown variables 
is related exactly to the geometry of elements. Meshless (or meshfree) 
methods [1,2] , in which the approximation of unknown variables re- 
quires only nodes, can overcome the meshing-related drawbacks. 

The main difference between mesh-based methods and meshless 
methods is the way in which the shape function is formulated. The 
moving least squares (MLS) approximation [3] is extensively used to 
formulate meshless shape functions. Many meshless methods, such 
as the element-free Galerkin (EFG) method [4,5] , the meshless local 
Petrov–Galerkin (MLPG) method [6] , the boundary node method (BNM) 
[7,8] and the hybrid boundary node method (HBNM) [9] have been de- 
veloped using the MLS approximation. Besides, some MLS variants [2] , 
such as the interpolating MLS [10,11] , the improved MLS [12,13] and 
the improved interpolating MLS [14,15] have also been proposed. These 
MLS approximations have many advantages, such as good smoothness 
and high computational accuracy. Like other numerical methods, these 
MLS approximations also have their own deficiencies. The main defi- 
ciency is that many nodes are required to form the shape function [2,16] , 
which leads to the increase in computational cost and the decrease in 
computational efficiency. 
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To enhance the computational efficiency of the MLS approxima- 
tion, a complex variable moving least squares (CVMLS) approximation 
[16] has been developed by introducing the complex variable theory 
into the MLS approximation. A distinguished feature of the CVMLS ap- 
proximation is that two-dimensional functions can be approximated by 
one-dimensional basis functions. Then, the number of coefficients in the 
approximation function of the CVMLS is less than that of the MLS, and 
therefore the CVMLS has lower computational cost than the MLS. Some 
meshless methods, such as the complex variable EFG method [2,17] , the 
complex variable MLPG method [18] , and the complex variable bound- 
ary element-free method (CVBEFM) [19] have been developed based on 
the CVMLS approximation. It has been shown in Refs. [2,16–19] that, 
the numerical error of these CVMLS methods is much less than that 
of the MLS methods for the same node distribution, and the CVMLS 
methods need fewer nodes than the MLS-based methods for the same 
numerical precision. Therefore, the CVMLS methods have greater com- 
putational precision and efficiency than the MLS meshless methods. 

The functional used in the CVMLS approximation to solve the un- 
known coefficients is defined directly in a weighted squares form. 
Based on the CVMLS approximation, an improved CVMLS approxima- 
tion [20] has been developed by using the complex modulus to define 
a new functional. Compared with the CVMLS, the improved CVMLS 
has a more specific physical meaning because of the use of the new 

functional and the polynomial conjugated basis. By combining the im- 
proved CVMLS approximation with the global Galerkin weak form, the 
improved CVEFG method has been developed [20–22] . Besides, an inter- 
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polating CVMLS method [23] has been presented based on the improved 
CVMLS approximation with a singular weight function. 

Recently, a shifted and scaled polynomial basis function has been 
developed to stabilize the MLS [24] . Theoretical analysis and numerical 
verification show that the stabilized MLS prevents the instability oc- 
currence [25] . The inherent instability of the interpolating MLS is also 
studied theoretically and numerically [11] . In this paper, shifted and 
scaled complex variable basis functions are used to stabilize the CVMLS 
approximation. 

Boundary integral equations (BIEs) and BEMs have been widely 
used for the numerical solution of boundary value problems. The BNM 

[7] and the HBNM [9] are boundary-only meshless methods formulated 
using the MLS approximation and BIEs, while the CVBEFM [19] is a 
CVMLS-based boundary-only meshless method. Besides, the boundary 
element-free method (BEFM) [12,26,27] is formulated combining BIEs 
with the improved MLS approximation. These methods take the advan- 
tages of both the BIEs in dimension reduction and the MLS in element 
elimination. However, since shape functions generated by the MLS and 
the CVMLS lack the delta function property, it is difficult to impose 
boundary conditions in these methods. In fact, the implementation of 
boundary conditions in the BNM and the HBNM adds the number of sys- 
tem equations, while boundary conditions in the BEFM and the CVBEFM 

are implemented with constraints [14] . 
The Galerkin boundary node method (GBNM) [28,29] is another 

boundary-only meshless method that combines the variational form of 
BIEs with the MLS approximation. In this method, the implementation of 
boundary conditions does not present any difficulty. Besides, the GBNM 

can yield symmetric and positive definite system matrix. Numerical ap- 
plications and theoretical error estimates of the GBNM have been pre- 
sented for problems in potential theory [28–30] and fluid mechanics 
[31,32] . 

As in the BNM, curvilinear coordinates are used in the GBNM to for- 
mulate meshless shape functions. In fact, if one attempts to formulate 
shape functions directly using Cartesian coordinates, the moment matrix 
involved in the MLS will be singular or ill-conditioned. For example, the 
matrix is singular whenever the boundary nodes lie on a straight line [7] . 
Nevertheless, it is burdensome and time-consuming to obtain the curvi- 
linear coordinates for some problems, such as complicated boundary 
problems and moving boundary problems [33] . 

In this paper, the CVMLS approximation is introduced into the GBNM 

to produce a meshless complex variable Galerkin boundary node method 
(CVGBNM). Details of numerical implementation of the CVGBNM are 
presented for general BIEs, potential problems and Stokes problems. 
Based on the error results of the CVMLS approximation, asymptotic er- 
ror estimates of the CVGBNM are derived. 

In the CVGBNM, the CVMLS approximation is used to generate 
the trial and test functions of the variational form of BIEs. Then, the 
CVGBNM is expected to have higher computational efficiency than the 
GBNM. Besides, because Cartesian coordinates can be used directly 
and easily in the CVMLS to accommodate the curved boundary, the 
CVGBNM avoids the curvilinear coordinates required in the BNM and 
the GBNM. Moreover, compared with the BNM and the CVBEFM, bound- 
ary conditions in the CVGBNM are applied directly and exactly, and the 
system matrix in the CVGBNM is symmetric and positive definite. Ac- 
cordingly, the CVGBNM overcomes the disadvantages of the BNM, the 
CVBEFM and the GBNM, while possesses the advantages of the three 
methods. 

An outline of this paper is as follows. Section 2 presents and analyzes 
the CVMLS approximation. Then, a detailed analysis and application of 
the CVGBNM for general BIEs is given in Section 3 , while numerical im- 
plementations and asymptotic error estimates of the CVGBNM for po- 
tential problems and Stokes problems are presented in Section 4 . Finally, 
numerical examples and conclusions are provided in Sections 5 and 6 , 
respectively. 

2. The complex variable moving least squares (CVMLS) 

approximation 

2.1. Formulations 

Let Ω ⊂ ℝ 

2 be a bounded domain with a Lipschitz continuous bound- 
ary Γ. A generic point in Ω is denoted by 𝐱 = 

(
𝑥 1 , 𝑥 2 

)T 
or 𝑧 = 𝑥 1 + 𝑖𝑥 2 , 

where 𝑖 = 

√
−1 is an imaginary number. Let 

{
𝑧 𝐼 
}𝑁 

𝐼=1 be a set of N nodes 

on Γ. This set is used to define a finite open covering 
{
ℜ 𝐼 

}𝑁 

𝐼=1 of Γ
composed of N disks ℜ I centered at z I , where 

ℜ 𝐼 = 

{
𝑧̃ ∈ Γ ∶ ||𝑧 𝐼 − 𝑧̃ || < ℎ 𝐼 

}
, 𝐼 = 1 , 2 , ⋯ , 𝑁 

denotes the influence domain of z I , and h I is the radius of ℜ I . 
Let u 1 and u 2 be two real value functions defined on Γ. To obtain 

the CVMLS approximation of the complex value function 𝑢 ( 𝑧 ) = 𝑢 1 + 𝑖𝑢 2 , 

define the following local approximation 

𝑢 ( 𝑧 ) ≈  𝑢 
(
𝑧, 𝑧 ∗ 

)
= 

𝑚 ∑
𝑗=0 

𝑝̄ 𝑗 
(
𝑧 ∗ 
)
𝑎 𝑗 ( 𝑧 ) = 𝐩̄ T 

(
𝑧 ∗ 
)
𝐚 ( 𝑧 ) , ∀𝑧 ∈ Γ (1) 

where  is an approximation operator, the point z ∗ can either be the 
evaluation point z or a nodal point z I in the influence domain of z , and 

𝐩̄ ( 𝑧 ) = 

[
𝑝̄ 0 ( 𝑧 ) , ̄𝑝 1 ( 𝑧 ) , ̄𝑝 2 ( 𝑧 ) , ..., ̄𝑝 𝑚 ( 𝑧 ) 

]T = 

[
1 , ̄𝑧 , ̄𝑧 2 , ..., ̄𝑧 𝑚 

]T 
is the basis function vector which equals the conjugate of the conven- 
tional basis function vector 

𝐩 ( 𝑧 ) = 

[
𝑝 0 ( 𝑧 ) , 𝑝 1 ( 𝑧 ) , 𝑝 2 ( 𝑧 ) , ..., 𝑝 𝑚 ( 𝑧 ) 

]T = 

[
1 , 𝑧, 𝑧 2 , ..., 𝑧 𝑚 

]T 
(2) 

The vector 𝐚 ( 𝑧 ) = 

[
𝑎 0 ( 𝑧 ) , 𝑎 1 ( 𝑧 ) , ..., 𝑎 𝑚 ( 𝑧 ) 

]T 
in Eq. (1) can be obtained 

by minimizing the functional 

 ( 𝑧 ) = 

∑
𝐼∈∧( 𝑧 ) 

𝑤 𝐼 ( 𝑧 ) 
||| 𝑢 

(
𝑧, 𝑧 𝐼 

)
− 𝑢 𝐼 

|||2 
= 

∑
𝐼∈∧( 𝑧 ) 

𝑤 𝐼 ( 𝑧 ) 

( 

𝑚 ∑
𝑗=0 

𝑝̄ 𝑗 
(
𝑧 𝐼 
)
𝑎 𝑗 ( 𝑧 ) − 𝑢 𝐼 

) ⎛ ⎜ ⎜ ⎝ 
𝑚 ∑

𝑗=0 
𝑝̄ 𝑗 
(
𝑧 𝐼 
)
𝑎 𝑗 ( 𝑧 ) − 𝑢 𝐼 

⎞ ⎟ ⎟ ⎠ 
as [2,20–22] 

𝐚 ( 𝑧 ) = 𝐀 

−1 ( 𝑧 ) 𝐁 ( 𝑧 ) 𝐮 (3) 

where ∧( 𝑧 ) 
Δ
= 

{
𝐼 1 , 𝐼 2 , ⋯ , 𝐼 𝜏

}
⊆ { 1 , 2 , ⋯ , 𝑁 } is the set of the global se- 

quence numbers of nodes whose influence domains cover the point z , 

and 𝐮 = 

[
𝑢 𝐼 1 

, 𝑢 𝐼 2 
, ⋯ , 𝑢 𝐼 𝜏

]T 
with 𝑢 𝐼 = 𝑢 1 𝐼 + 𝑖𝑢 2 𝐼 are the nodal values of u 

at the node z I . Besides, 

𝐀 ( 𝑧 ) = 𝐏 T 𝐖 ( 𝑧 ) ̄𝐏 (4) 

𝐁 ( 𝑧 ) = 𝐏 T 𝐖 ( 𝑧 ) (5) 

𝐏 = 

[
𝐩 
(
𝑧 𝐼 1 

)
, 𝐩 
(
𝑧 𝐼 2 

)
, ⋯ , 𝐩 

(
𝑧 𝐼 𝜏

)]T 
(6) 

𝐖 ( 𝑧 ) = diag 
(
𝑤 𝐼 1 

( 𝑧 ) , 𝑤 𝐼 2 
( 𝑧 ) , ⋯ , 𝑤 𝐼 𝜏

( 𝑧 ) 
)

Moreover, 

𝑤 𝐼 ( 𝑧 ) = 𝜑 

( ||𝑧 − 𝑧 𝐼 
||

ℎ 𝐼 

) 

, 𝐼 = 1 , 2 , ⋯ , 𝑁 (7) 

are weight functions, where the function 𝜑 is nonnegative, 𝛾th times 
continuously differentiable, and its derivatives up to order 𝛾 are 
bounded. Here, 𝛾 is a positive integer. The weight functions w I ( z ) also 
satisfy 𝑤 𝐼 ( 𝑧 ) ∈ 𝐶 

𝛾

0 
(
ℜ 𝐼 

)
. Clearly, we have 

𝑧 ∈ ℜ 𝐼 ⇔ 𝐼 ∈ ∧( 𝑧 ) ⇔ 𝑤 𝐼 ( 𝑧 ) > 0 , ∀𝑧 ∈ Γ, 𝐼 = 1 , 2 , ⋯ , 𝑁 (8) 

Substituting Eq. (3) into Eq. (1) yields 

𝑢 ( 𝑧 ) ≈  𝑢 
(
𝑧, 𝑧 ∗ 

)
= 𝐩 T 

(
𝑧 ∗ 
)
𝐀 

−1 ( 𝑧 ) 𝐁 ( 𝑧 ) 𝐮 (9) 
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