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a b s t r a c t 

Due to the “wave velocity error ” between the discretized model and continuum systems, the accuracy of numerical 

results using standard finite element method (FEM) in time domain acoustic problems is unsatisfactory with 

increasing frequency. Such wave velocity error is strongly related to the balance between the “stiffness ” and 

“mass ” of discretized systems. By adjusting the location of integration point of mass matrix, the redistribution 

of the mass is able to “tune ” the balance between the stiffness and mass. Thus, the wave velocity error can 

be minimized in time domain acoustic problems with a balance system. On the other hand, it is found that 

the stability of discretized model of time domain acoustic problems can be improved by the softened stiffness. 

Furthermore, it is found that the balance between the smoothed stiffness and mass can also be achieved with the 

tuning of integration point r in the mass matrix. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Recently, with increasing customer demands on the comfort of air- 

crafts cabin and vehicle passenger compartments, the need for the nu- 

merical solutions governed by the Helmholtz equation in the design of 

acoustic systems is becoming more and more important. Currently, most 

of the numerical solutions for such designs are still based on the stan- 

dard finite element method (FEM) [1] and boundary element method 

(BEM) [2] using the commercially available software packages. How- 

ever, the numerical solutions using FEM and BEM will deteriorate in 

the middle frequency range due to the dispersion error [3–5] , which is 

the so-called numerical “pollution ” of discretization errors in the ampli- 

tude and phase (dispersion error). The refinement of mesh is a possible 

way to improve the numerical solutions of FEM and BEM. However, the 

computational cost will increase significantly especially for large scale 

3D problems using sufficiently fine mesh. In order to enhance computa- 

tional efficiency of acoustic problems, many numerical methods includ- 

ing the Galerkin/least-squares finite element method (GLS) [6,7] , the 

Galerkin-gradient/least-squares method (GGLS) [8] , the generalized fi- 

nite element method (GFEM) [9,10] and the residual-free finite element 

method (RFFEM) [11] have been proposed. However, very few of these 

methods may eliminate the pollution errors in general 2D and 3D acous- 

tic problems [12] . 

On the other hand, the appropriate element types for the discretiza- 

tion of physical structure in the industry is also very important. In gen- 
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eral, the low order elements such as three-node triangular (T3) in 2D and 

four-node tetrahedral (T4) elements in 3D are preferred by engineers 

due to the easy creation of mesh for any complex geometry. In addition, 

the low-order elements allow very convenient h -type mesh refinement 

adaptation, leading to easier automation in modeling and simulation for 

domains with complicated geometries [13] . However, the low-order tri- 

angular or tetrahedral elements in the FEM model exhibit overly-stiff

behavior, leading to the loss of balance between the stiffness and mass 

matrices. Thus, the results for acoustic problems using lower order of 

FEM especially in the mid-frequency range [14] are relatively poor. Al- 

though the higher order elements of FEM can give higher convergence 

rate for static and dynamic problems [15] , the numerical results for the 

eigenvalues of higher modes (higher frequencies) can deteriorate dras- 

tically in the analysis of dynamics problems. 

Recently, Liu’s group has found that the generalized gradient 

smoothing operations [16–18] is able to effectively soften overly-stiff

of stiffness for traditional FEM model, known as the softening effects. 

By using the simple triangular and tetrahedral mesh, various types 

of smoothed finite element methods (S-FEM) with different levels of 

smoothing effects [19–27] have been developed. Compared with stan- 

dard FEM, S-FEM is able to give ultra-accurate solution, high conver- 

gence rate and better computational efficiency in many engineering ar- 

eas [20, 28–35] . In particular, the past works have demonstrated that 

the edge-based smoothed finite element (ES-FEM) with easy implemen- 

tation provides a proper “softness ” to the model [36–40] , which gives 
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much more accurate results in frequency domain of acoustic problems 

compared with standard FEM [14] . 

In the simulation of time or frequency domain acoustic problems, 

the mass matrix is involved in the discretized model. Therefore, an al- 

ternative approach to improve the low-order element is to modify the 

mass matrix to balance the discretized model between stiffness and mass 

matrix. Marfurt [41] found that the FEM using a weighted average of 

lumped and consistent and masses achieved the very accurate results. 

Furthermore, the modified integration rules were proposed by Murthy 

to compute the stiffness and mass matrix using quadrilateral mesh for 

acoustic problems [42,43] , leading to very accurate numerical results 

with second-order accuracy compared with the traditional integration. 

In addition, Idesman [44] also modified the integration rules to com- 

pute the mass and stiffness matrices to achieve a good balance between 

them in the analysis of elastodynamics problems, which causes the re- 

duction of numerical dispersion significantly. All these numerical meth- 

ods were performed based on quadratic elements and the tuning is done 

for both stiffness and mass matrices. Following this, we proposed a 

mass-redistributed finite element method (MR-FEM) for acoustic prob- 

lems using triangular and tetrahedral elements in the frequency domain 

[45,46] . The key concept of MR-FEM is just to adjust the integration 

point in the mass matrix to tune the balance of mass and stiffness using 

linear triangular and tetrahedral elements [45–50] . 

In this work, the optimal integration point in the generalized mass 

matrix created by MR-FEM using linear triangular element is furthered 

investigated in time domain acoustic problems. Different from frequency 

domain, the stability and accuracy of numerical solutions depend on 

both time step and spatial discretization in the simulation of time do- 

main acoustic problems. In order to narrow down this research, time 

integration of central difference method with combination of MR-FEM 

is focused. Based on the dispersion error analysis, it is found that the dis- 

persion error can be minimized with the optimal integration point r in 

the mass matrix. Compared with traditional consistent and lumped mass 

matrix, MR-FEM can provide much more accurate results. In addition, 

the balance of smoothed stiffness created by ES-FEM and mass is also 

studied in this work. It is found that ES-FEM can give the best solutions 

when the optimal integration r = 0 or r = 2/3 in the mass matrix (cor- 

responding to consistent mass) is adopted. Furthermore, the stability of 

time domain acoustic problems is investigated in this work. It is found 

that critical time step in the ES-FEM and FEM model is proportional to 

integration points of mass matrix r as r > 1/3. More importantly, for the 

first time, it is observed that ES-FEM behaves more stable compared with 

FEM in the transient acoustic problems as the same integration point r 

is employed in the mass matrix. This is due to the softened effect in 

the stiffness caused by ES-FEM. Our important study in this work from 

mathematical perspective and numerical experiments has revealed two 

key facts in the simulation of transient acoustic problems: the stability 

of transient acoustic problems can be improved by the smoothed stiff- 

ness; the accuracy of numerical solutions can be improved significantly 

by adjusting the integration point in the mass matrix. 

The paper is structured as follows: the mathematical model of time 

domain acoustic problems together with the formulation of MR-FEM is 

described in Section 2 . The stability of time domain acoustic problems is 

presented in Section 3 . Section 4 illustrates the theoretical study of mini- 

mization of wave velocity error in the time domain acoustic problems. A 

number of numerical examples are studied in detail to analyze the accu- 

racy and stability of time domain acoustic problems in Section 5 . Finally 

the conclusions from the numerical solutions are made in Section 6 . 

2. Mathematical model of time domain acoustic problem 

2.1. Discretized of equation 

Consider a 2D time domain acoustic problem, and the domain Ω with 

boundary Γ can be decomposed into three portions ΓD , ΓN and ΓA , where 

Γ = ΓD ∪ ΓN ∪ ΓA . The governing equation for the time domain acoustic 

wave can be expressed as follows: 

Δ𝑝 − 

1 
𝑐 2 

𝜕 2 𝑝 

𝜕 𝑡 2 
= 0 (1) 

where p represents the acoustic pressure, c is the speed of sound travel- 

ing in the medium, ∆ stands for the Laplace operator and t is time. 

The Dirichlet, Neumann and Robin boundary conditions on ΓD , ΓN 

and ΓA can be given as follows: 

𝑝 = 𝑝 𝐷 on Γ1 Dirichlet condition (2) 

∇ 𝑝 ⋅ 𝑛 = − 𝜌𝑣̇ 𝑛 on Γ2 Neumann condition (3) 

∇ 𝑝 ⋅ 𝑛 = − 𝜌𝐴 𝑛 

𝜕𝑝 

𝜕𝑡 
on Γ3 Robin condition (4) 

where v n , 𝜌 and A n represent the normal velocity on the boundary ΓN , 

the density of medium and admittance of the structural damping on 

boundary ΓA , respectively. 

The acoustic weak form of system equations can be formulated by 

discretizing the wave equation Eq. (1) using FEM, and the integration is 

performed based on element. 

∫Ω ( ∇ 𝛿𝑝 ) ⋅ ∇ 𝑝 dΩ + 

1 
𝑐 2 ∫Ω 𝛿𝑝 

𝜕 2 𝑝 

𝜕 𝑡 2 
dΩ + 𝜌∫Γ2 𝛿𝑝 ̇𝑣 𝑛 dΓ + 𝜌𝐴 𝑛 ∫Γ3 𝛿𝑝 

𝜕 𝑝 

𝜕 𝑡 
dΓ = 0 

(5) 

The pressure can be expressed in the approximate form. 

𝑝 = 

𝑚 ∑
𝑖 =1 

𝐍 𝑖 𝑝 𝑖 = 𝐍𝐩 (6) 

𝛿𝑝 = 

𝑚 ∑
𝑖 =1 

𝐍 𝑖 𝑝 𝑖 = 𝐍 𝛿𝐩 (7) 

where m is the number of nodal variables of the element, N i are FEM 

shape functions and p i is the unknown nodal pressure. By substituting 

the approximation as indicated in Eqs. (6) and ( 7 ) into the Galerkin 

weak form and invoking the arbitrariness of virtual node pressure, the 

discretized system equation can then be obtained and written in the 

following matrix form: 

[ 𝐌 ] { ̈𝐩 } + [ 𝐂 ] { ̇𝐩 } + [ 𝐊 ] { 𝐩 } = { 𝐅 } (8) 

where 

𝐊 = ∫Ω ∇ 𝐍 

T ∇ 𝐍 dΩ The acoustical stif fness matrix (9) 

M = 

1 
𝑐 2 ∫Ω 𝐍 

T 𝐍 dΩ The acoustical mass matrix (10) 

𝐂 = 𝜌𝐴 𝑛 ∫Γ3 𝐍 

T 𝐍 dΓ The acoustical damping matrix (11) 

𝐅 = − 𝜌∫Γ2 𝐍 

T 𝑣̇ 𝑛 dΓ The vector of nodal acoustic forces (12) 

{ 𝐩 } 𝑇 = { 𝑝 1 , 𝑝 2 , … , 𝑝 𝑛 } Nodal acoustic pr essur e in the time domain (13) 

In this work, the edge-based smoothed finite element method (ES- 

FEM) [36] with optimal integration point r in the generalized mass ma- 

trix created by MR-FEM to solve the transient acoustic problems is also 

discussed. In the ES-FEM, by introducing the gradient smoothing tech- 

nique based on the edges of elements as shown in Fig. 1 , the gradient 

component ∇ N in Eq. (9) is replaced by the smoothed item ∇ 𝐍 . 

𝐊 ES = ∫Ω ∇ 𝐍 

T 
∇ 𝐍 dΩ The smoothed stif fness matrix (14) 
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