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a b s t r a c t 

A three-dimensional (3D) high-order numerical manifold method (NMM) is developed based on the partition of 

unity method (PUM). We enrich the high-order NMM by introducing the derivative degrees of freedom associated 

with explicit physical significance. The global displacement in the formulation is approximated by a second-order 

approximation for the local displacement in conjunction with a first-order weight function. This not only helps 

the high-order NMM effectively avoid the problem of linear dependence that is frequently encountered in the 

PUM, but also renders the stress or strain at the star points continuous for the high-order NMM without the 

necessity of further smoothing operation. The effectiveness and robustness of the proposed new high-order NMM 

are demonstrated by several typical examples. Future potential developments and applications of the method are 

discussed. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The numerical manifold method (NMM) [1] has received increasing 

attention in a wide range of engineering research areas, including frac- 

ture mechanics [2–8] , fluid dynamics [9,10] , seepage flow [11,12] , the 

fourth order problems [13] , the functionally graded materials [14] , and 

isogeometric analysis [15] . Typically based on the first-order partition 

of unity (PU) [16] , the NMM has recently been extended to higher or- 

ders, including the second [17] and the third order [18] developments 

with the addition of mathematical patches (MP) to cover a manifold ele- 

ment (ME), and the higher-order extension in [19] based on raising the 

order of local approximation. The various formulations of high-order 

NMM commonly suffer a serious issue of linear dependence (LD) which 

may further cause the notorious rank deficiency (RD) issue of the global 

stiffness matrix. To address this, a new algorithm has been developed 

[20] and further extended [21] to predict the RD. A dual local approxi- 

mation scheme has also been introduced [22] , and some strategies have 

been suggested in [23] to suppress this phenomenon. More recently, a 

two-dimensional (2D) high-order NMM with derivative degrees of free- 

dom has been proposed by the authors [24] which may help to avoid 

the issue of linear dependence. Other latest developments of NMM en- 

compass extensions based on an explicit formulation [25] and involving 

of strain-rotation decomposition to resolve large deformation and large 

rotation issues [26–28] . 
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While 2D simplifications may be applicable to a number of cases, 

most real engineering problems are three-dimensional (3D). And as 

the enhanced version of FEM, 3D extended finite element method (3D- 

XFEM) was developed [29] . 3D generalized finite element method (3D- 

GFEM) was also proposed for investigating some 3D structural mechan- 

ics problems [30] . In addition, 3D mesh-free method [31] has also 

achieved some certain progress. It is hence desirable a full 3D NMM 

could be developed for practical application. There are two major chal- 

lenges related to the 3D extension from a 2D NMM. (1) Choice of mesh. It 

may seem to be straightforward to formulate the 3D NMM using 4-node 

tetrahedral meshes [32,33] . However, for a practical problem, regular 

tetrahedrons may not completely fill a 3D space. Hence, the tetrahedral 

meshes at domain boundaries have to be subdivided and replaced by 

refined tetrahedrons [34,35] . Other mesh type can also be used, for ex- 

ample, hexahedral meshes have recently been employed in developing 

a new augmented NMM with flat-top PU by He et al. [36] , which helps 

to avoid the issue of linear dependence in the NMM. A fault-cutting 

algorithm based on hexahedral meshes has also been developed [37] . 

(2) Physical significance of the undetermined coefficients. In most 2D 

NMM, the undetermined coefficients, or so-called as generalized degrees 

of freedom (DOFs) that are associated with the basis of the local ap- 

proximation, do not possess concrete physical meanings. A recent study 

[23] has borrowed the concept of DOFs used in discontinuous deforma- 

tion analysis (DDA) [38,39] for improvements. Similar ideas have been 

further used for a high-order NMM [24] . 
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Twenty four tetrahedrons expressed by node 
number:
1: 1-12-4-13   9: 7-8-10-11   17: 9-11-13-5
2: 1-13-5-9   10: 5-8-11-13   18: 9-14-11-6
3: 1-2-12-9   11: 4-10-8-13   19: 10-11-14-7
4: 2-3-12-14  12: 3-4-12-10   20: 10-13-11-8
5: 2-9-6-14   13: 9-13-12-1   21: 11-13-14-9
6: 5-6-9-11   14: 9-12-14-2   22: 12-14-13-9
7: 6-7-14-11  15: 10-14-12-3  23: 11-14-13-10

Fig. 1. A hexahedron composed by 24 tetrahedrons. 

This study aims at developing a high-order 3D NMM based on the 

tetrahedral meshes. A new local approximation is proposed to construct 

the global approximation based on the principle of PU. The DOFs with 

attributed physical meaning are incorporated into the high-order 3D- 

NMM, and its linear independence is verified by counting the number 

of zero eigenvalues of the global stiffness matrix [40,41] . The new local 

approximation for the 3D-NMM leads to a continuous stress field at the 

star point, hence avoiding the necessity of extra smoothing operation on 

the stress field. 

2. Brief introduction of the NMM 

In a 3D space, an arbitrary shape of problem domain can be filled by 

a mesh of hexahedrons. Each hexahedral element may be further subdi- 

vided into a number of tetrahedrons. Fig. 1 shows a hexahedron consist- 

ing of 24 tetrahedrons. A problem domain is referred to as the physical 

cover (PC) in the NMM. Fig. 2 shows a PC outlined by the black solid 

line with 120 tetrahedrons marked by the gray dotted line wherein we 

will focus on the specific tetrahedron manifold element (ME) 1234 high- 

lighted by the red solid line. In the tetrahedral mesh, all tetrahedrons 

share the same node form a mathematical patch (MP) and the communal 

node is called the star. All these MPs forms a collective named mathe- 

matical cover (MC). It should be pointed out that the MPs can be an 

arbitrary geometry polyhedron, sphere, and ellipsoid, and among oth- 

ers. In Fig. 2 , each MP is a polyhedron, see, e.g. , MP 1 , MP 2 , MP 3 , and 

MP 4 associated with the tetrahedron 1234. Cutting the PC with the MPs 

generates the physical patches (PPs). For instance, MP 1 , MP 2 , MP 3 , and 

MP 4 are cut by the resolution domain to form PP 1 , PP 2 , PP 3 , and PP 4 . 

The intersection of these four PPs then creates the ME 1234, as shown 

in Fig. 3 . It is postulated that the global approximation defined over 

every ME is related to its correspounding 4 PPs. One can refer to Refs. 

[1,6,23,42] for more detailed formulation and description of the NMM. 

3. Local and global approximation 

The constant, ordinary power or trigonometric series can serve as the 

basis of function of NMM’s local displacement approximation defined 

over each PP. If the power series is employed, for the k th PP it reads 

𝐮 𝑘 ( 𝑥, 𝑦, 𝑧 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑢 𝑘 ( 𝑥, 𝑦, 𝑧 ) 
𝑣 𝑘 ( 𝑥, 𝑦, 𝑧 ) 
𝑤 𝑘 ( 𝑥, 𝑦, 𝑧 ) 

⎫ ⎪ ⎬ ⎪ ⎭ 
= 

𝑚 ∑
𝑗=1 

⎛ ⎜ ⎜ ⎝ 
𝑏 𝑘𝑗 ( 𝑥, 𝑦, 𝑧 ) 0 0 

0 𝑏 𝑘𝑗 ( 𝑥, 𝑦, 𝑧 ) 0 
0 0 𝑏 𝑘𝑗 ( 𝑥, 𝑦, 𝑧 ) 

⎞ ⎟ ⎟ ⎠ 
⎛ ⎜ ⎜ ⎝ 
𝑑 𝑘 3 𝑗−2 
𝑑 𝑘 3 𝑗−1 
𝑑 𝑘 3 𝑗 

⎞ ⎟ ⎟ ⎠ (1) 

where b k , j ( x,y,z ) is the basis function of a local displacement approxi- 

mation and m is the number of b k , j ( x,y,z ). Assume that the number of 

PPs is n , and there are 3 m unknowns in each PP, namely 

𝐷 𝑘 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑑 𝑘 1 
𝑑 𝑘 2 
⋯ 

𝑑 𝑘 3 𝑚 −2 
𝑑 𝑘 3 𝑚 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 𝑘 = 1 , 2 , … , 𝑛 (2) 

where D k is a basic unknown coefficient vector and has no apparent 

physical meaning, being referred to as generalized degrees of freedom. 

Nevertheless, the degrees of freedom of 2D-DDA have been endowed 

with the physical meaning and have been used to construct the local 

displacement approximation of NMM [24] . Following the core idea of 

Ref. [24] , in this study, we will adopt the degrees of freedom of 3D- 

DDA [43] to establish the local approximation. Namely, Eq. (1) can be 

rewritten as 

𝐮 𝑘 = T 𝑘 𝐝 𝑘 (3) 

where 

𝐓 

𝑘 = 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝑁 𝑘 0 0 𝑁 𝑘𝑥 0 0 0 𝑁 𝑘𝑧 

2 
𝑁 𝑘𝑦 

2 0 𝑁 𝑘𝑧 − 𝑁 𝑘𝑦 

0 𝑁 𝑘 0 0 𝑁 𝑘𝑦 0 𝑁 𝑘𝑧 

2 0 𝑁 𝑘𝑥 

2 − 𝑁 𝑘𝑧 0 𝑁 𝑘𝑥 

0 0 𝑁 𝑘 0 0 𝑁 𝑘𝑧 

𝑁 𝑘𝑦 

2 
𝑁 𝑘𝑥 

2 0 𝑁 𝑘𝑦 − 𝑁 𝑘𝑥 0 

⎤ ⎥ ⎥ ⎥ ⎦ 
(4) 

and 

𝐝 𝑘 = 

{ 

𝑢 𝑘 𝑣 𝑘 𝑤 

𝑘 𝜀 𝑘 
𝑥 

𝜀 𝑘 
𝑦 

𝜀 𝑘 
𝑧 

𝛾𝑘 
𝑦𝑧 

𝛾𝑘 
𝑧𝑥 

𝛾𝑘 
𝑥𝑦 

𝜔 

𝑘 
𝑥 

𝜔 

𝑘 
𝑦 

𝜔 

𝑘 
𝑧 

} T 
(5) 

where 𝜀 𝑘 
𝑥 
, 𝜀 𝑘 

𝑦 
, 𝜀 𝑘 

𝑧 
, 𝛾𝑘 

𝑦𝑧 
, and 𝛾𝑘 

𝑥𝑦 
are the strain components at star 

( x k ,y k ,z k ). Moreover, 𝜔 

𝑘 
𝑥 
, 𝜔 

𝑘 
𝑦 
, and 𝜔 

𝑘 
𝑧 

are the rotational angle of any in- 

finitesimal vector passing the same star around the x -, y - and z -axis, re- 

spectively. Apparently, the basic unknown vector, d k , has clear physical 

meanings. In conjunction with Eqs. (4) and (5) , after some mathematical 

manipulations, Eq. (3) can be rewritten as 

𝐮 𝑘 ( 𝑥, 𝑦, 𝑧 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑢 𝑘 ( 𝑥, 𝑦, 𝑧 ) 
𝑣 𝑘 ( 𝑥, 𝑦, 𝑧 ) 
𝑤 𝑘 ( 𝑥, 𝑦, 𝑧 ) 

⎫ ⎪ ⎬ ⎪ ⎭ 
= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝑁 𝑘 𝑢 

𝑘 + 𝑁 𝑘𝑥 𝜀 
𝑘 
𝑥 
+ 

𝑁 

𝑘𝑧 

2 𝛾
𝑘 
𝑧𝑥 

+ 

𝑁 

𝑘𝑦 

2 𝛾
𝑘 
𝑥𝑦 

+ 𝑁 𝑘𝑧 𝜔 

𝑘 
𝑦 
− 𝑁 𝑘𝑦 𝜔 

𝑘 
𝑧 

𝑁 𝑘 𝑣 
𝑘 + 𝑁 𝑘𝑦 𝜀 

𝑘 
𝑦 
+ 

𝑁 

𝑘𝑧 

2 𝛾
𝑘 
𝑦𝑧 

+ 

𝑁 

𝑘𝑥 

2 𝛾
𝑘 
𝑥𝑦 

− 𝑁 𝑘𝑧 𝜔 

𝑘 
𝑦 
+ 𝑁 𝑘𝑥 𝜔 

𝑘 
𝑧 

𝑁 𝑘 𝑤 

𝑘 + 𝑁 𝑘𝑧 𝜀 
𝑘 
𝑧 
+ 

𝑁 

𝑘𝑦 

2 𝛾
𝑘 
𝑦𝑧 

+ 

𝑁 

𝑘𝑥 

2 𝛾
𝑘 
𝑧𝑥 

+ 𝑁 𝑘𝑦 𝜔 

𝑘 
𝑥 
− 𝑁 𝑘𝑥 𝜔 

𝑘 
𝑦 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
(6) 

The shape functions defined on a tetrahedral mesh ijmn (see Fig. 4 ) 

is introduced 

𝐿 𝑘 = 

�̃� 𝑘 + ̃𝑏 𝑘 𝑥 + 𝑐 𝑘 𝑦 + 𝑑 𝑘 𝑧 

6 𝑉 
= 𝑎 𝑘 + 𝑏 𝑘 𝑥 + 𝑐 𝑘 𝑦 + 𝑑 𝑘 𝑧, 𝑘 = 𝑖, 𝑗, 𝑚, 𝑛 (7) 
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