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The left–right operator splitting method is studied for the efficient calculation of acoustic fields scattered by 

arbitrary rough surfaces. Here, the governing boundary integral is written as a sum of left- and right-going 

components, and the solution expressed as an iterative series, expanding about the predominant direction of 

propagation. Calculation of each term is computationally inexpensive both in time and memory, and the field is 

often accurately captured using one or two terms. The convergence and accuracy are examined by comparison 

with exact solution for smaller problems, and a series of much larger problems are tackled. The method is also 

immediately applicable to other scatterers such as waveguides, of which examples are given. 
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1. Introduction 

The calculation of acoustic scattering by extended rough surfaces 

remains a challenging problem both theoretically and computationally 

(e.g. [1–6] ) especially in the presence of strong multiple scattering. This 

becomes acute at low grazing angles, where multiple scattering occurs 

for very slight roughness. Boundary integral methods [7,8] are flexible 

and often used for such problems but can be computationally intensive 

and scale badly with increasing wavenumber. Much effort has therefore 

been devoted to this aspect, where possible exploiting properties of the 

scattering regime. For forward scattering in 2-dimensions, for example, 

provided roughness length-scales are large, the ‘parabolic integral equa- 

tion method ’ can be applied [9,10] . For electromagnetic problems, also 

formulated using boundary integrals, the methods of ordered multiple 

interactions and left–right splitting in both 2-d and 3-d [11,12] have 

been developed: here, the scattered field is expressed as an iterative se- 

ries of terms of increasing orders of multiple scattering, as described be- 

low. Approaches using conjugate gradient solutions combined with fast 

multilevel multipole are also receiving much attention. An important ex- 

ception which overcomes the dependence of computational expense on 

wavenumber is [13] , which has been applied to surfaces with piecewise 

constant impedance data or scattering in 2-d by convex polygons. 

A versatile recursive technique known as Multiple Sweep Method 

of Moments was developed and analysed in [14,15] where it was com- 

pared with Method of Ordered Multiple Interactions. This technique was 

shown to tackle ‘composite ’ problems for which the above method di- 

verges such as for a ship on a rough sea surface. Other iterative solutions 
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have been studied in [16] . In addition, theoretical results are available 

in various limiting regimes (e.g. perturbation theory for small surface 

heights, k 𝜎 ≪ 1 including periodic surfaces [17–19] , Kirchhoff approxi- 

mation [20,21] , or the small slope approximation [22] which is accurate 

over a wider range of scattering angles than both of these). For arbitrary 

finite rough surfaces, however, validation is more difficult, and such re- 

sults are therefore scarce. 

In this paper the Left–Right Splitting method is developed and 

applied to the problem of acoustic scattering in three dimensions by 

randomly rough surfaces. For relatively small surfaces the results are 

validated by comparison with numerical solution of the full boundary 

integral equation. The principal aims are to validate the approach; 

to examine its robustness and convergence as the angle of incidence 

changes; and to consider further approximations which may reduce 

the computation time. The approach is applicable to a wide range of 

interior and exterior scattering problems, and we give examples for 

acoustic propagation in a varying duct, in addition to scattering from 

large rough surfaces. 

The mathematical principles of the method are the same as for the 

two-dimensional problem [23] although implementation is considerably 

more complicated: the unknown field 𝜓 on the surface is expressed as 

the solution to the Helmholtz integral equation, with the integration 

taken over the rough surface. This may be written formally as 𝐴𝜓 = 𝜓 inc , 

where 𝜓 inc is the incident field impinging (say) from the left, so that we 

require 𝜓 = 𝐴 

−1 𝜓 inc . The region of integration is split into two, to the 

left and right of the point of observation, allowing A to be written as 

the sum of ‘left ’ and ‘right ’ components, say ( 𝐿 + 𝑅 ) 𝜓 = 𝜓 inc . Roughly 
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Fig. 1. Example rough surface. 

speaking L represents surface interactions due to scattering from the 

left, and R the residual scattering from the right. The inverse of A can 

formally be expressed as a series 

𝐴 

−1 = 𝐿 

−1 − 𝐿 

−1 𝑅𝐿 

−1 + … . (1) 

Discretization of the integral equation yields a block matrix equation, 

in which L is the lower triangular part of the block matrix A (including 

the diagonal) and R is the upper triangular part. Under the assumption 

that most energy is right-going, L is the dominant part of A , and the se- 

ries can be truncated to provide an approximation for 𝜓 . This approach 

has several advantages. In terms of wavelength 𝜆, evaluation of each 

term scales with the fourth rather than the sixth power of 𝜆 required for 

𝐴 

−1 ; subsequent terms (of which typically only the first one or two are 

needed) have the same computational cost. With further approximations 

this can be reduced to 𝜆3 . However, this operation count is only part of 

the story, because the low complexity and memory requirement allow 

very large problems to be tackled without such additional approxima- 

tion. In addition the algorithm lends itself well to parallelization, and 

the speed scales approximately linearly with the number of processors. 

In Section 2 the governing equations and left–right splitting approx- 

imation are formulated. The numerical details and main results are 

shown in Section 3 . 

2. Formulation of equations 

Consider a 3-dimensional medium with horizontal axes x, y and 

vertical axis z directed upwards, and let k be the wavenumber. Let 

𝑆 = 𝑠 ( 𝑥, 𝑦 ) be a 2-dimensional rough surface, varying about the plane 

𝑧 = 0 , which is continuous and differentiable as a function of x, y (see 

Fig. 1 ). (Arbitrary scatterers can also be treated by the methods shown 

here; examples will be given later.) Consider a time-harmonic acoustic 

wave 𝜓 , obeying the wave equation (∇ 

2 + 𝑘 2 ) 𝜓 = 0 in the region z > s ( x, 

y ), resulting from an incident wave 𝜓 inc at a small grazing angle 𝜃 to the 

horizontal plane. This may for example be a plane wave or a finite beam. 

The axes can be chosen so that the principal direction of propagation is 

at a small angle to the ( x, z ) plane. 

We will treat the Neumann boundary condition, i.e. an acoustically 

hard surface. The derivation for the Dirichlet condition is similar. The 

starting point for this treatment is the boundary integral formulation 

[4,7,8] . Thus 

𝜕𝜓 

𝜕𝐧 
= 0 (2) 

where n is the outward normal (i.e. directed out of the region z > s ( x, 

y )). The free space Green ’s function is given by 

𝐺( 𝐫 , 𝐫 ′) = 

𝑒 𝑖𝑘 |𝐫 − 𝐫 ′|
4 𝜋|𝐫 − 𝐫 ′| . (3) 

The field at a point r in the medium is related to the surface field by the 

boundary integral 

𝜓 inc ( 𝐫) = 𝜓( 𝐫) − ∫𝑆 

𝜕𝐺( 𝐫, 𝐫 ′) 
𝜕𝑛 

𝜓( 𝐫 ′) 𝑑𝐫 ′ (4) 

where 𝐫 = ( 𝑥, 𝑦, 𝑧 ) and 𝐫 ′ = ( 𝑥 ′, 𝑦 ′, 𝑠 ( 𝑥 ′, 𝑦 ′)) , say, and taking the limit as 

r → r s gives 

𝜓 inc ( 𝐫 𝑠 ) = 𝜓( 𝐫 𝑠 ) − ∫𝑆 

𝜕𝐺( 𝐫 𝑠 , 𝐫 ′) 
𝜕𝑛 

𝜓( 𝐫 ′) 𝑑 𝐫 ′ (5) 

where now 𝐫 𝑠 = ( 𝑥, 𝑦, 𝑠 ( 𝑥, 𝑦 )) . The integrand is singular at the point 𝐫 ′ = 

𝐫 𝑠 , and we must take care to interpret this integral as the limit of the 

integral in Eq. (4) as r → r s . 

In order to treat the equation numerically it is convenient to write 

the integration with respect to x, y , so that Eq. (5) becomes 

𝜓 𝑖𝑛𝑐 ( 𝐫 𝑠 ) = 𝜓( 𝐫 𝑠 ) − ∫
∞

−∞ ∫
∞

−∞

𝜕𝐺( 𝐫 𝑠 , 𝐫 ′) 
𝜕𝑛 

𝜓( 𝐫 ′) 𝛾( 𝐫 ′) 𝑑 𝑥 ′𝑑 𝑦 ′ (6) 

where (with very slight abuse of notation) 

𝛾( 𝐫 ′) = 

√ 

1 + 

(
𝜕𝑠 

𝜕𝑥 ′

)2 
+ 

( 

𝜕𝑠 

𝜕𝑦 ′

) 2 
. (7) 

and the expression under the square root is evaluated at r ′ . 

2.1. Formal solution and splitting series 

The method of solution is analogous to that applied to the electro- 

magnetic problem in 2-d or 3-d [23,24] . The governing integral equation 

(6) is expressed in terms of right- and left-going operators L and R with 

respect to the x -direction: 

𝜓 inc ( 𝐫 𝑠 ) = 𝐴𝜓 ≡ ( 𝐿 + 𝑅 ) 𝜓 (8) 

where L and R are defined (for an L 2 function f ) by 

𝐿𝑓 ( 𝐫) = 𝑓 − ∫
∞

−∞ ∫
𝑥 

−∞

𝜕𝐺( 𝐫 , 𝐫 ′) 
𝜕𝑛 

𝑓 ( 𝐫 ′) 𝛾( 𝐫 ′) 𝑑 𝑥 ′ 𝑑 𝑦 ′, (9) 

𝑅𝑓 ( 𝐫) = − ∫
∞

−∞ ∫
∞

𝑥 

𝜕𝐺( 𝐫 , 𝐫 ′) 
𝜕𝑛 

𝑓 ( 𝐫 ′) 𝛾( 𝐫 ′) 𝑑 𝑥 ′ 𝑑 𝑦 ′ (10) 

and 𝐫 = ( 𝑥, 𝑦, 𝑧 ) , 𝐫 ′ = ( 𝑥 ′, 𝑦 ′, 𝑠 ( 𝑥 ′, 𝑦 ′)) . (For notational conveneince L is 

interpreted to include the contribution from the singularity arising in 

(5) when r → r ′ .) 

The region of integration is thus split into two with respect to x , and 

the solution of Eq. (8) can be expanded as a series, given by 

𝜓 = ( 𝐿 + 𝑅 ) −1 𝜓 𝑖𝑛𝑐 = 

[
𝐿 

−1 − 𝐿 

−1 𝑅𝐿 

−1 + …
]
𝜓 inc . (11) 

The key observation is that at fairly low grazing angles the effect of R 

is in some sense small, so that the series converges quickly and can be 

truncated. Define the n th order approximation as 

𝜓 𝑛 = 

𝑛 ∑
1 

𝐿 

−1 (𝑅𝐿 

−1 )𝑛 −1 𝜓 inc . (12) 

(Note that L and R depend on surface geometry and wavenumber only, 

not on incident field; and that one might expect convergence of the series 

(11) for given 𝜓 inc but not uniform (norm) convergence of the series 

(1) .)This corresponds physically to an assumption that surface-surface 

interactions are dominated by those ‘from the left ’, as expected in this 

scattering regime. L is large compared with R first, because L includes 

the dominant ‘diagonal ’ value; second because a predominantly right- 

going wave gives rise to more rapid phase-variation in the integrand in 

R than in L . (Although this depends on surface geometry and cannot 

in general be quantified precisely, it occurs because in (5) the phase in 

Green ’s function kernel decreases as the observation point is approached 

from the left and then increases to the right; whereas the phase of 𝜓 

tends to increase throughout, like that of the incident field.) This is borne 
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